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Abstract

Across many domains, market-based interventions hold the promise of reducing costs through im-
proved allocative efficiency in settings where prices are otherwise missing. This paper develops an em-
pirical framework showing how a theoretical change in allocative efficiency following a policy change can
be recovered using a quasi-experimental panel data estimator.We apply this framework, together with ad-
ministrative data, to the study of two major U.S. markets for air pollution, a canonical missing markets
setting where concerns over high abatement costs have made market-based interventions particularly ap-
pealing. We find that for California’s RECLAIM program, allocative efficiency improved by 10 percentage
points. For the U.S.’s NOx Budget Program (NBP), we do not detect efficiency gains. We rationalize this
result by showing that prior to the introduction of the emission markets, baseline levels of heterogeneity in
the marginal abatement cost (MAC) for regulated plants in RECLAIM was higher than for manufacturing
plants in the NBP. This heterogeneity MAC is directly related to potential cost savings from the introduc-
tion of emission markets. Furthermore, heterogeneity analyses suggest the plant and firm-level flexibility
in pollution abatement options, and the regulator’s time commitment to the policy matter for the efficiency
gains of pollution markets.
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1 Introduction

Policies that introduce market incentives can enable greater allocative efficiency in settings where markets
are traditionally missing.1 Determining actual efficiency changes following a market-based policy, how-
ever, is challenging. Allocative efficiency is tightly linked to the dispersion in input prices. When markets
are missing, so too are prices, making it difficult to establish the extent of misallocation before a policy
and thus any changes following it. This paper develops a quasi-experimental framework for estimating
allocative efficiency changes in such settings.

We apply this framework to environmental markets, a domain particularly well-suited for market-based
policies both because of the canonical view of pollution as a “missing market” problem (Coase, 1960; Arrow,
1969) and because substantial heterogeneity across polluters suggests allocative efficiency gains. Theory de-
veloped five decades ago establishes that an environmental market, sometimes known as “cap-and-trade”,
can achieve an aggregate pollution target at minimum total cost through allocating pollution cuts efficiently
(Kneese, 1964; Crocker, 1966; Dales, 1968; Baumol and Oates, 1971; Montgomery, 1972). A subsequent
second-best literature questions this prediction arguing that the presence of other distortions can in theory
not only dampen first-best efficiency gains but in some cases even lead to efficiency losses when a market-
based policy is adopted. Nonetheless, the promise of allocative efficiency gains continues to motivate the
adoption of market-based policies in nearly every environmental domain, from fisheries, groundwater,
ecosystem services, local air pollution, to the global climate, despite limited empirical support.

Our framework starts with the observation that allocative efficiency for any input occurs when its
marginal product is equalized across producers. Distortions drive wedges between producers’ marginal
products, leading to misallocation (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Restuccia and
Rogerson, 2013). To make progress, we consider an economy-wide model of input allocation in which a
producer’s (unobserved) input distortion relates to its (observed) average revenue of emissions through
a first order condition. This relationship informs our difference-in-differences research design which first
recovers residuals of average revenue of emissions after accounting for other key determinants, and then
estimates how a pollution market alters the variance of these residuals. We show that under certain as-
sumptions, our quasi-experimental estimator recovers a lower bound on the relative change in abatement
cost across policies, our theoretical estimand.

Our framework has three additional advantages. First, our theory accommodates policies with any
arbitrary allocation of inputs, regardless of institutional context. This flexibility allows us to study a wide-
range of settings in which the pre-market policy can take on any form and does not pre-specify that a
market-based policy necessarily achieves allocative efficiency. Crucially, this means our main statistical test
is two-sided: a market-based policy can either decrease or increase allocative inefficiency, as allowed by
second-best theory. Second, we allow policies to have different total levels of an input, accommodating
the fact that in practice, many market-based environmental policies stipulate a drop in total pollution (i.e.,
the “cap” in cap-and-trade) in addition to reallocation in pollution. Third, our framework uses a quasi-
experimental approach to account for several common concerns in the misallocation literature, including
cross-sectional heterogeneity and endogeneity in firm-specific demand and output elasticities, and chang-
ing macroeconomic conditions over time.

We study the introduction of two major U.S. markets for nitrogen oxides (NOx): southern California’s

1Examples of market-based interventions can be found in education (Ladd, 2002; Epple, Romano and Urquiola, 2017), healthcare
(Roth, Sönmez and Ünver, 2007; Agarwal et al., 2019), food banks (Prendergast, 2022), and for allocating radio spectrum (Milgrom
and Segal, 2020).
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Regional Clean Air Incentives Market (RECLAIM) and the eastern U.S. NOx Budget Program (NBP). These
markets are notable for their scale, covering nearly all major polluting facilities within their jurisdiction.2

The average emissions effects of these programs have also been extensively studied (Fowlie, Holland and
Mansur, 2012; Deschenes, Greenstone and Shapiro, 2017), allowing us to build on established research
designs to examine changes in allocative efficiency. Within each program, we focus on manufacturing
facilities, in part because our framework may not apply to vertically-integrated electric utilities. For both
programs, we build a linking algorithm to merge facility-by-year NOx emissions data from state and/or
federal environmental agencies with restricted-use revenue data from the U.S. Census of Manufacturer
(CM) and the Annual Survey of Manufacturing (ASM).

We find that RECLAIM and the NOx Budget Programs lowered manufacturing NOx emissions by an
average of respectively 18% and 26% after their introductions. Using our theory-based quasi-experimental
estimator, we find that RECLAIM improved allocative efficiency by 10 percentage points on average in the
six years after its cap began to bind. An event study specification shows that this effect grew by 2 percentage
points annually. We find allocative improvements across different 2-digit Standard Industrial Classification
(SIC) manufacturing industries.

By contrast, we do not detect allocative efficiency changes under the NBP, nor across different manu-
facturing industries. Between policies, we rationalize this result through the observation that across a wide
range of underlying characteristics of MAC of regulated plants, baseline heterogeneity of MAC is systemat-
ically greater for the set of manufacturing plants covered by RECLAIM than under the NBP. Hence, before
the implementation of the markets, there was more potential for cost-savings under RECLAIM than un-
der NBP, and our ex-post data supports this ex-ante observation. Within policies, heterogeneity analyses
provide suggestive evidence that plant and firm-level flexibility in pollution abatement options, and the
regulator’s time commitment to the policy matter for the efficiency gains of pollution markets.

We contribute to a rich literature quantifying the total abatement cost of market-based environmental
policies. In theory, a polluter’s marginal abatement cost is the difference in optimized profit between no
abatement and the specified abatement level. In practice, much of the empirical literature has relied on the
cost minimizing dual of this problem whereby a particular cost function is assumed and then estimated
in a cross-section of polluters.3 As with any cost function estimation, these studies must argue that all
relevant inputs and their prices are observed and vary exogenously. For the estimated cost function to
be valid for counterfactual policies, this approach must also assume that polluters do not alter output in
the counterfactual, restricting a potentially important abatement option. Additionally, prior approaches
often assume that a market-based policy necessarily leads to allocative efficiency gains, leaving researchers
with determining by just how much.4 Our approach starts with the initial profit maximization problem,
using its first order condition to inform an observable proxy for marginal product of emissions in a manner
similar to Anderson and Sallee (2011). Our quasi-experimental estimator also allows for the possibility that
a market-based policy could lead to more or less misallocation, consistent with second-best theory.

In doing so, this paper contributes to a growing quasi-experimental literature documenting the conse-
quences of market-based environmental policies. Prior studies have focused on how such policies affect

2The words plant and facility are used interchangeably throughout the manuscript. Importantly, either are different than a firm
who could own or operate more than one plant or facility.

3Seminal applications of this approach include ex-ante studies that forecast the allocative efficiency gains of hypothetical market-
based policies (Gollop and Roberts, 1983, 1985; Carlson et al., 2000) and ex-post studies that quantify efficiency gains of realized
policies (Keohane, 2006; Chan et al., 2018).

4In ex-ante studies, a cost minimizing algorithm is often assumed to characterize the counterfactual market-based policy. In some
ex-post studies, the counterfactual uniform pollution standard is modeled as an extra constraint on the cost minimization problem,
which necessarily increases total costs relative to the market-based policy.
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aggregate costs (Petrick and Wagner, 2014; Calel and Dechezleprêtre, 2016; Meng, 2017; Calel, 2020), ag-
gregate benefits and their distribution (Fowlie, Holland and Mansur, 2012; Murray and Rivers, 2015; De-
schenes, Greenstone and Shapiro, 2017; Lawley and Thivierge, 2018; Hernandez-Cortes and Meng, 2022;
Colmer et al., 2022), or both aggregate costs and benefits (Ayres, Meng and Plantinga, 2021).

Recent paper have extended this tradition by combining causal inference evidence with structural mod-
els to study the efficiency consequences of market-based environmental policies. Rafey (2023), and Aronoff
and Rafey (2023) combine causal parameter identification with structural models to study the gains from
trade in water and wetland markets. Greenstone et al. (2023) combine experimental evidence on emissions
effects following the introduction of an Indian emissions market with structural estimation of the allocative
efficiency gains. We focus on developing a quasi-experimental estimator for the change in allocative effi-
ciency, bringing a causal inference perspective to testing arguably the central theoretical appeal of market-
based environmental policies. Also, when comparing emission markets to alternative policy instruments,
these papers often assume the same aggregate environmental target across policy options. In this paper
we document an important feature of the introduction of environmental markets, which is that they reduce
substantially aggregate emissions. This implies that facilities under the market can be operating in very
different regions of the abatement space then in the counterfactual. Our quasi-experimental framework
allows for different caps across policy spaces.

Shapiro and Walker (2024) use regional air pollution offset markets under the US Clean Air Act as a
revealed preference measure of the marginal abatement cost of pollutants. The authors compare these
regional offset to the marginal benefit of pollution abatement to look at the efficient level of air pollution
across the US. Our study departs from Shapiro and Walker (2024) by allowing for plant specific distortions,
which implies that observed market prices in emission markets need not be the true cost-minimizing MAC.

Finally, we contribute to the misallocation literature in macroeconomics and development economics.
Input misallocation within an economy has been shown to be a strong determinant of aggregate produc-
tivity differences across economies (i.e., the indirect approach) (Restuccia and Rogerson, 2008; Hsieh and
Klenow, 2009; Restuccia and Rogerson, 2013). More recently, researchers have turned to quasi-experimental
approaches to examine the causes of misallocation (i.e., the direct approach) (Restuccia and Rogerson, 2017),
with a focus on capital market liberalization policies (Bau and Matray, 2023; Sraer and Thesmar, 2023). As
with Bau and Matray (2023), we argue that a quasi-experimental estimator can address potential concerns
about measurement error (Bils, Klenow and Ruane, 2021) and misspecification (Haltiwanger, Kulick and
Syverson, 2018). However, in contrast to Bau and Matray (2023) and Sraer and Thesmar (2023), we develop
a direct link between our quasi-experimental estimate and our theoretical estimand, enabling us to quan-
tify misallocation directly without requiring a separate aggregation formula that needs either calibrated
structural parameters or assumptions about input prices.Finally, the introduction of a market may be qual-
itatively different than changes to existing capital markets: when a market is introduced, agents must not
only respond to price signals but must also learn to interact with a new institution.

Our approach has several limitations. First, we are unable to determine whether a market-based en-
vironmental policy achieved allocative efficiency, only that it led to more or less relative misallocation.
Second, in contrast to studies that estimate a cost or production function, we do not analyze the specific
abatement decisions of facilities following a market-based policy, such as abatement technology adoption,
which may shed light on the type of decisions that alter misallocation costs (Linn, 2008; Fowlie, 2010; Chan
et al., 2018). Finally, we rely on distributional and production function assumptions in our theory to facili-
tate a mapping between our quasi-experimental estimator and the change in allocative efficiency.
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The rest of the paper has the following structure. Section 2 provides background on market-based
policies in the U.S. Section 3 presents our conceptual framework, linking theory with our empirical research
design. Section 4 discusses our data. Section 5 presents our main results. Section 6 discusses mechanisms
for our results. Section 7 concludes the paper. Appendix A, B, C, and D offer additional theoretical proofs,
data, figures, and tables.

2 Background

2.1 Environmental markets and allocative efficiency

Environmental markets grew out of two strands of economic thinking over fifty years ago. The first was an
institutionalist view, led by Coase (1960), that excessive pollution arose due to a lack of property rights to ei-
ther pollute or to its damages. The second was Arrow (1969)’s notion from general-equilibrium theory that
externalities (and thus pollution) can be regarded as a case of missing markets. Both views suggested a cor-
rection through some form of introduced market. Building on these foundations, environmental economists
recognized that environmental markets can in theory achieve a particular environmental target at minimal
cost by allocating emissions across heterogeneous polluters efficiently. This cost-minimization property
was articulated in early proposals for markets for water quality (Kneese, 1964) and air pollution (Crocker,
1966; Dales, 1968) and formally demonstrated soon after (Baumol and Oates, 1971; Montgomery, 1972).5

Today, cost-effectiveness serves as the central appeal behind the modern environmental market, sometimes
called “cap-and-trade”. In such programs, a regulator establishes a limit (or cap) on total emissions by issu-
ing a fixed supply of emission permits. Regulated facilities are then either given, or must purchase through
auction or trade with other facilities, permits to cover their emissions. Cost-effectiveness has motivated the
adoption of environmental markets in nearly every environmental domains: today, pricing policies cover
30% of global fisheries (Costello et al., 2016), account for over $36 billion in global ecosystem service pay-
ments (Salzman et al., 2018), govern 20% of global greenhouse gas (GHG) emissions (World Bank, 2021),
and underlie many major air pollution policies.

This promise of cost-effectiveness has also been subjected to criticism, both theoretically and empirically.
Indeed, a second-best theoretical literature emerged shortly after the cost-effectiveness was established in
a first-best setting. This literature considered both existing distortions such as market power in output
markets (Malueg, 1990; Godby, 2002), complementary policies (Bohi and Burtraw, 1992; Fowlie, 2010), and
input taxation (Goulder et al., 1999; Fullerton and Metcalf, 2001), and distortions that come with the en-
vironmental market itself in the form of market power in the permit market (Hahn, 1984; Godby, 2002),
transaction costs (Stavins, 1995), non-compliance (Malik, 1990), and rent-seeking (Harstad and Eskeland,
2010). These distortions can not only lower allocative efficiency gains when an environmental market is in-
troduced relative to a first-best setting, but in some cases can even result in allocative efficiency losses. From
this literature emerged a more modest view on cost-effectiveness, namely that in real-world settings where
various imperfections can affect both market-based and non-market-based environmental policies, whether
an environmental market improves allocative efficiency is essentially an empirical question (Stavins, 1995),
a point that echoes Demsetz (1969) and indeed was raised back in Coase (1960).

The empirical critique of cost-effectiveness is of a more epistemic nature. Many early pioneers of en-
vironmental markets had worked on the theory of optimal environmental policy, which at the time was

5For excellent reviews of this intellectual history, see Tietenberg (2010a), Tietenberg (2010b), Berta (2017), and Banzhaf (2020).
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hitting practical limitations: setting optimal policy requires regulators to know, among other things, the
marginal abatement cost curves of every polluter, objects that are unobserved. The impracticality of this
informational requirement pivoted attention away from optimal policy towards the design of instruments
that can achieve environmental and economic objectives with minimum regulatory information. An en-
vironmental market satisfies this criteria: in (first-best) theory, an economy-wide environmental objective
can be met at minimum cost without the regulator needing to know every polluter’s marginal abatement
cost curve. But within this lies an inherent tension with empirical validation: if environmental markets are
appealing because it does not require a regulator to know marginal abatement cost curves, is it reasonable
to assume that researchers can estimate such curves when attempting to establish the allocative efficiency
of environmental markets? We return to this point in Section (3.1) when discussing prevailing approaches
to estimating allocative efficiency changes.

2.2 U.S. air pollution markets

Perhaps the domain where environmental markets have been most influential is in U.S. air pollution policy.
Beginning with 1976, an offset market was introduced under the U.S. Clean Air Act (CAA) allowing new
facilities entering into a county failing CAA air quality standards (i.e., in “nonattainment”) to purchase
pollution credits from existing facilities. Other experiments with market-based interventions followed.6

These experiments eventually led to the implementation of national and regional air pollution cap-and-
trade programs.

Figure 1: Major air pollution cap-and-trade market programs in the U.S.

Notes: Figure 1 show the timeline of major global or local air pollution cap-and-trade markets in the U.S. from 1990 to 2020. The
length of the line represents the start to end dates for each markets. The different SO2 and NOx markets under CAIR and CSARP are
bundled together for visual ease.

6See Carlin (1992) for other early air pollution markets.
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Figure 1 summarizes all such programs over the last three decades. For each market, we show its time
duration, the pollutants regulated, and whether the policy covered manufacturing and/or electricity fa-
cilities. We employ two criteria in selecting the markets we study, both necessitated by our framework
in Section 3. First, because we assume profit-maximizing facilities, we cannot study electricity generators
that were part of vertically-integrated utilities. This rules out the SO2 Acid Rain Program (ARP), which
covers only electricity generators and was introduced when the electricity sector was composed largely of
vertically-integrated utilities.7 This requirement also complicates the study of electricity generators in later
pollution markets when deregulation of electric utilities may have coincided with the introduction of pol-
lution markets (Cicala, 2022), such as with the Regional Greenhouse Gas Initiative (RGGI). To avoid these
complications, we focus on manufacturing facilities that participate in pollution markets. Second, because
our framework is static, we omit cap-and-trade programs that allow dynamic banking and borrowing of
permits such as California’s AB32 greenhouse gas program. These restrictions leave us with two eligible
air pollution markets, both for nitrogen oxides (NOx): southern California’s Regional Clean Air Incentives
Market (RECLAIM) and the eastern U.S. NOx Budget Program (NBP). While the Ozone Transport Com-
mission (OTC) and Clean Air Interstate Rule (CAIR) covered a some manufacturing facilities, it was less
than in the NBP that respectively followed and preceded both markets. RECLAIM, ARP, RGGI, AB32 and
the markets under the Cross-State Air Pollution Rule (CSAPR) are still operational as of 2024.

2.3 RECLAIM

The REgional CLean Air Incentives Market (RECLAIM) is a mandatory NOx emission cap-and-trade pro-
gram in southern California that was introduced in 1994 by the South Coast Air Quality Management
District (SCAQMD). It was introduced to help the region reduce ground-level ozone or smog, and help the
region achieve its Clear Air Act ambient standards for ozone.8 Because NOx is a precursor to ground-level
ozone formation, reduction in NOx emissions can help reduce ozone concentrations. The program’s initial
goal was to reduce NOx emissions across the SCAQMD region from covered facilities by 70% between 1994
and 2003 (Burtraw and Szambelan, 2010).

Facilities emitting more than four tons of NOx emissions per year are covered by RECLAIM. The mar-
ket covers about 400 plants located in Los Angeles, Orange, Riverside and San Bernandino counties. These
plants are mainly in the manufacturing, electricity generation, and the oil and gas extraction and distribu-
tion industries. Within the manufacturing sector, RECLAIM covers a wide range of industries, from food
manufacturing, cement manufacturing, petroleum refining, to primary or secondary metal manufacturing.
About 80% of observations are in 30 different 3-digit SIC sectors.

Yearly permits are freely allocated according to a pre-determined formula based on historical emissions
of facilities between 1989 and 1992. A common rate across facilities dictated the decrease in yearly alloca-
tions. Banking of permits is prohibited in the market. Ununsed permits expire at the end of a compliance
period (Burtraw and Szambelan, 2010).

The introduction of RECLAIM replaced a pre-existing NOx command-and-control (CAC) policy. Specif-
ically, RECLAIM replaced over 40 prescriptive rules imposed by the SCAQMD. Under the previous CAC

7Additionally, our framework uses facility-level revenue data. For electricity generators that are part of a vertically-integrated
utilities, it is not obvious what is an appropriate measure of revenue as the utility runs its own internal pricing system.

8Although RECLAIM also covers facilities SO2 emissions, the main focus of the market was to combat ozone through the reduction
of NOx emissions. The SO2 part of the market was relatively quite small (Fowlie and Perloff, 2013). Following other studies on
RECLAIM, we focus on the NOx emissions part of the program (Fowlie, Holland and Mansur, 2012; Fowlie and Perloff, 2013; Grainger
and Ruangmas, 2018; Mansur and Sheriff, 2021).
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regulations, NOx emissions from specific polluting equipment, such as industrial boilers, were mandated to
adopt specific control technologies. With RECLAIM, facilities no longer needed to have equipment-specific
controls other than New Source Review permitting requirements under the U.S. Clean Air Act. RECLAIM
instead requires facilities to account for emissions from their sources, including specific sources not covered
by technology requirements from the previous regulations (U.S. Environmental Protection Agency, 2002).
The inclusion of all sources of emissions may expand the abatement options of plants.

Importantly for our empirical setting, while the market was introduced in 1994, the aggregate NOx

emission cap did not start binding until 2000, as covered emissions were far below aggregate permit al-
locations in the early periods of the program (Fowlie, Holland and Mansur, 2012). Furthermore, the lack
of banking prohibited facilities from using their unused permits for future periods. Thus, we follow pre-
vious RECLAIM studies and consider the treatment period starting when the cap begins to bind in 2000
(Fowlie, Holland and Mansur, 2012; Grainger and Ruangmas, 2018; Mansur and Sheriff, 2021). Previous
papers studying RECLAIM have explored its effects on the distribution of emissions (Fowlie, Holland and
Mansur, 2012; Grainger and Ruangmas, 2018; Mansur and Sheriff, 2021), and the effect of initial permit
allocation rules on final facility emissions (Fowlie and Perloff, 2013)

2.4 NOx Budget Program

The NOx Budget Program (NBP) was a NOx emission cap-and-trade market operated by the U.S. EPA that
ran from 2003 to 2008. The NBP covered NOx emissions of over 700 large emitting facilities across 20 eastern
states.9 The market was implemented to help states comply with ozone standards under the 1990 Clean Air
Act Amendments. The U.S. EPA assigned each state a summertime NOx emission budget for large point
sources, and encouraged states to participate in the NBP market to provide compliance flexibly to their
regulated sources (Burtraw and Szambelan, 2010). The U.S. EPA allowed states to determine how their
allowance budget would be allocated across facilities. About 90% of NBP-regulated facilities were large
power plants and about 100 facilities were manufacturing plants. For the manufacturing plants covered,
more than 90% of the facilities are included in only four 4-digit North American Industry Classification
System (NAICS) industries, namely pulp and paper manufacturing, chemical manufacturing, petroleum
refineries, and primary metal manufacturing.10

Since the NBP was designed to reduce summer ozone, the market operated only between the months
of May and September. As opposed to RECLAIM, the NBP did not cover emissions at the facility level,
and instead regulated specific pollution sources within facilities, namely boilers. The NBP featured heavy
restrictions on the banking of allowances. Once the allowance bank exceeded 10% of the yearly cap, banked
allowances, when withdrawn, only counted towards half a ton of emissions. Figure A2 features the close
trending of the aggregate emissions and cap under the NBP. In 2009, the NBP was replaced by the ozone
air markets under the Clean Air Interstate Rule (CAIR).11

The NBP was part of a larger effort by the U.S. EPA and state agencies to reduce NOx emissions from
large point sources. Facilities covered under the NBP were required through earlier regulation to install
Reasonably Available Control Technologies (RACT). Such mandates were not removed after the beginning

9The NBP participating states include: Alabama, Connecticut, Delaware, Illinois, Indiana, Kentucky, Maryland, Massachusetts,
Michigan, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Virginia,
and West Virginia, and Washington, DC.

10SIC and NAICS are separate classification regimes with no one-to-one mapping for detailed classification levels. SIC 3-digit
provides about the same level of detail as NAICS 4-digit.

11As detailed in Section 2.2, we do not consider the CAIR market since the market drops most NBP-covered manufacturing plants.
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of the trading program. Indeed, the U.S. EPA required that states participating in the NBP to include “re-
quirements that all major stationary sources located in nonattainment areas must install reasonably avail-
able control technology” (U.S. Environmental Protection Agency, 2007). Furthermore, each state imple-
mented a variety of measures to continue incentivizing the adoption of specific emission control technolo-
gies (Burtraw and Szambelan, 2010).

Since 90% of the regulated boilers are power plants, most prior studies have focused on the NBP’s
impact on the electricity sector. Fowlie, Knittel and Wolfram (2012) use engineering estimates to build a
marginal cost curve for power plants under the NBP. They compare total abatement cost of achieving NOx

emission reductions for power plants in the NBP to abatement costs for vehicle standards. Using difference-
in-differences, and structural estimation approaches, studies have found evidence of small capital modifi-
cations and technology adoption in anticipation and after the introduction of the NBP (Linn, 2008; Fowlie,
2010; Popp, 2010). Other papers have looked at the health effects of the NBP, and the impact of differences
in state permit allocation rules (Deschenes, Greenstone and Shapiro, 2017; Lange and Maniloff, 2021).

Fewer papers have looked at the impacts of the NBP on manufacturing facilities. Shapiro and Walker
(2018) combine a theoretical model with a triple-differences research design to uncover the implied pollu-
tion tax faced by regulated manufacturing facilities. They find that in the years following the introduction
of the NBP, manufacturing facilities saw a doubling of their pollution tax level. Curtis (2018) uses a triple-
differences framework to study the county-level manufacturing employment impacts of the NBP, finding
that counties with regulated manufacturing plants experienced decreases in manufacturing employment.

3 Conceptual framework

This section details our framework, linking theory and empirics, to estimate the change in allocative in-
efficiency following the introduction of a market-based policy. Section 3.1 begins with a stylized example
to illustrate why this is empirically challenging. Section 3.2 presents a model of environmental policy that
informs our estimand, a measure capturing the change in allocative inefficiency of emissions across two
arbitrary policies that can be brought to data. Section 3.3 introduces our quasi-experimental estimator.

3.1 Stylized example

We begin with a 2-facility example to illustrate the empirical challenges of estimating the change in alloca-
tive efficiency following a market-based policy. The graphs in Figure 2 show emissions on the horizontal
axis and its (shadow) price on the vertical axis. Facility 1 has a steeper marginal product of emissions curve
than facility 2.12 For a given allowable total emissions, E, there is a particular allocation of emissions that
minimizes total cost, indicated by the sum of the shaded areas across the facilities. As panel (a) indicates,
that efficient allocation occurs when the marginal product of emissions is equalized across facilities (i.e.,
the equimarginal principle is satisfied) at the economy-wide emissions price λ(E) such that the more costly
Facility 1 engages in less abatement while the less costly Facility 2 has more abatement.

12The horizontal axes in Figure 2 indicates emissions rather than abatement in order to illustrate emissions levels when the emis-
sions price is zero. When presented in terms of emissions abatement relative to the no-policy scenario, the marginal product of
emissions curve becomes the marginal abatement cost curve.
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Figure 2: Environmental policy and allocative (in)efficiency
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Notes: Panels illustrate allocative efficiency in emissions for a 2-facility economy. Horizontal axes indicate emissions. Vertical axes
indicate emissions price. In panel (a), total emissions E is allocated at minimum total cost with facilities equating their marginal
product of emissions (MPE) to the economy-wide emissions price λ(E). In panel (b), facilities face separate emissions prices, resulting
in misallocation and increased total cost.

Next, consider when total emissions E is not efficiently allocated across facilities, as shown in panel (b)
of Figure 2. When this happens, the marginal product of emissions is no longer equalized with each facility
facing its own emissions price, µi. There is too much abatement in one facility and not enough abatement
in the other, leading total cost to increase. This can arise under any environmental policy, regardless of
whether the policy is market- or non-market- based. That is one can imagine a version of panel (b) under a
baseline policy and another version under a market-based policy with a different set of distortions.

We are interested in quantifying the change in total cost between two policies (i.e., compare the total
areas under the curves across policies). Answering this question would be straightforward if one observes
every facility’s marginal product of emissions curves. Because they are not observed, the typical approach
is to obtain these curves via cost function estimation. Such an approach has several limitations. First, as
with any cost function estimation, the researcher must argue that she observes all inputs and their prices
and that each varies exogenously. Second, for the estimated cost functions to be valid for counterfactual
policies, duality theory requires that facility-specific output be unchanged in the counterfactual, restricting
a potentially important abatement option (Malueg, 1990). Third, many cost function studies implicitly
assumes that a market-based policy would necessarily lead to greater allocative efficiency than the policy it
replaces. For example, in ex-ante studies, a cost minimizing algorithm is often assumed to characterize the
counterfactual market-based policy (Gollop and Roberts, 1983, 1985; Carlson et al., 2000). While in some
ex-post studies, the counterfactual uniform pollution standard is modeled as an extra constraint on the cost
minimization problem, which necessarily increases total costs relative to the market-based policy (Chan
et al., 2018).13 Finally, there is an epistemic tension with trying to estimate facility-specific marginal product
of emissions curves: if a key appeal of environmental markets over command-and-control policies is that it

13Another approach to recovering the marginal product of emissions is to estimate a distance output function following Färe
et al. (1989, 1993). Because distance output, as a ratio of observed outputs to potential output under efficiency, is unobserved, its
value relies heavily on functional form assumptions on how inputs and outputs map onto distance output, and exogeneity of these
variables. Coggins and Swinton (1996), Swinton (2002), and Swinton (2004) conduct ex-post analyses of a market-based policy using
this approach.
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is unreasonable to expect a regulator to know such curves, how does one reasonably expect researchers to
be able to estimate them.

Panel (b) suggests an alternative approach. Rather than explicitly estimate each facility-level marginal
product of emissions curve, perhaps something can be learned about allocative efficiency by looking at the
dispersion in input prices. This idea is leveraged by the misallocation literature, where the dispersion in
appropriately-weighted input prices informs the aggregate productivity consequences of input misalloca-
tion (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Restuccia and Rogerson, 2013). We draw on
this insight, but with one critical caveat: by definition, input prices are missing (or are “shadow”) before a
market-based policy and consistently missing for facilities in a control group. That is, one needs to adapt
methods from the misallocation literature, designed for quantifying misallocation in existing markets, to the
study of new markets. Furthermore, in contrast to the stylized example in Figure 2, an empirically-useful
framework must allow for, among other things, an arbitrary number of heterogeneous facilities, policies
that may have different total emissions, and policy changes that may coincide with changing macroeco-
nomic conditions. We now turn to such a framework.

3.2 Theory

Let i = 1, ..., N index facilities using emissions ei and another input zi in the production function qi(ei, zi).
Let p(qi) denote output price, which may be affected by output, and w be price of input z. Policy state s is
defined by two features: the vector of facility-level emissions es = {e1s, ..., eNs} and total emissions across
facilities, Es = ∑i eis. Importantly, es need not be the efficient allocation of emissions across facilities for
total emissions Es.

Total abatement cost under allocative efficiency We are interested in quantifying the magnitude of al-
locative efficiency loss due to es under total emissions Es. To do so, we must first establish total abatement
cost when total emissions Es is efficiently allocated across facilities. Following (Montgomery, 1972), this is
the solution to the regulator’s problem of allocating Es emissions across facilities to maximize total profit.
That problem is

Π∗
i = max

ei ,zi
∑

i
p(qi)qi(ei, zi)− wzi

s.t. ∑
i

ei = Es

= max
ei ,zi

∑
i

p(qi)qi(ei, zi)− wzi − λs(∑
i

ei − Es) (1)

where λs(Es) is the economy-wide (shadow) emissions price on the total emissions constraint when facility-
level emissions are allocated efficiently, henceforth denoted as λs. Under efficient allocation, the total abate-
ment cost of going from Eo, total emissions in the absence of policy, to Es is

∆Π∗
s = (Eo − Es)

dΠs

dEs |Es

+O2

≈ (Eo − Es)λs (2)

where the first line applies a Taylor expansion around Es. The second line observes that via the envelope
theorem the derivative of optimized aggregate profit with respect to emissions is the aggregate shadow
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price, and uses the first order term of the Taylor series as an approximation.

Total abatement cost under a particular policy We next consider total abatement cost under policy s.
Optimal profit for facility i is

πis(eis) = max
ei ,zi

p(qi)qi(ei, zi)− wzi

s.t. ei = eis

= max
ei ,zi

p(qi)qi(ei, zi)− wzi − λsϕis(ei − eis) (3)

where, following the misallocation literature, ϕis is a facility-level distortion term, or wedge, that potentially
breaks the equivalence between the aggregate shadow price under efficient allocation and the facility-level
shadow price at eis. Intuitively, the policy induces an efficient allocation of emissions when there are no
distortions, ϕis = 1 ∀i. Allocative inefficiency arises when distortions generate dispersion in facility-level
shadow prices. Observe that eq. 3 encompasses a wide range of regulatory environments. For example,
under a command-and-control regulation, one can view the regulator as explicitly setting each facility’s
λsϕis in order to achieve a prescribed eis. Under an emissions trading policy, the aggregate emissions cap
would determine λs while any facility-specific trading frictions would be captured in ϕis.

Let eo = {eo
1, ..., eo

N} denote the vector of facility-level emissions in the absence of policy with Eo = ∑i eio.
Under policy s, the total abatement cost of going from the no-policy vector of emissions, eo, to the policy s
vector of emissions, es, is

∆Πs = ∑
i

∆πis(eis)

= ∑
i
(eio − eis)

dπis
deis |eis

+O2

≈ ∑
i
(eio − eis)λsϕis (4)

where the second line applies a Taylor expansion around eis. The third line observes that by the envelope
theorem the derivative of optimized profit with respect to emissions is the facility-level shadow price, and
uses the first order term of the Taylor series as an approximation.

Allocative inefficiency under a particular policy What is the cost of emissions misallocation under state
s? For a given total emissions Es, one can examine the ratio of total abatement cost under the policy to total
abatement cost under allocative efficiency. Combining eqs. 2 and 4, this measure is

θs =
∑i(eio − eis)λsϕis

(Eo − Es)λs
= ∑

i
aisϕis (5)

where ais = eio−eis
Eo−Es

are weights capturing facility-level shares of total abatement with ∑i ais = 1. There are
two limitations to θs. First, observe that under allocative efficiency, ϕis = 1 ∀i implies θs = 1. However,
the reverse is not in general true. Second, empirically, we do not directly observe facility-level abatement
shares ais

14 nor facility-level distortions, ϕis, the two ingredients that go into θs. To make progress on both

14Observe that abatement share ais requires facility-level emissions and total emissions in the absence of policy, eio and Eo . The
possibility that an existing pollution policy exists prior to the introduction of a market-based policy suggests that eio and Eo may not
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issues, we turn to two additional assumptions.

Assumption 1. Facility distortions are distributed ϕis ∼ LN (0, σ2
s )

Assumption 2. Facility abatement share ais is increasing in (a) ϕis and (b) ϕis
∂ais
∂ϕis

.

Assumption 1 provides two intuitive restrictions on facility-level distortions. First, ϕis > 0 when it is
lognormally distributed, ensuring that the facility-level shadow price of emissions is never negative.15 Sec-
ond, ϕis ∼ LN (0, σ2

s ) has a median value of one such that there is an equal number of over- and under-
abating facilities relative to the efficient allocation. This normalization allows for distortions to alter the
dispersion of emissions across facilities through σs without changing the aggregate emissions level. As-
sumption 2 also has an intuitive interpretation, capturing the idea that emission abatement is increasing in
distortions but not excessively.16 This leads to our first proposition establishing our measure of allocative
efficiency.

Proposition 1. Under Assumptions 1, 2a and 2b, (a) θs = 1 implies allocative efficiency, or ϕis = 1 ∀i when σ2
s = 0

and (b) θs is increasing in σ2
s .

That is, not only does θs = 1 imply allocative efficiency, but efficiency losses are increasing in the disper-
sion of distortions. Appendix A.1 details the proof. In practice, policy changes often entail both a change
in total emissions across facilities, Es, as well as the vector of facility-level emissions, es. In such settings, a
natural measure is the ratio of misallocation costs across policies. That is, if we consider two policy states
s ∈ {b, m}, where b indicates the baseline policy and m indicates the market-based policy, we are interested
in

θm

θb
=

∑i aimϕim

∑i aibϕib
(6)

θm
θb

cannot be directly estimated because facility-level abatement shares, ais, and distortions, ϕis are unob-
served. Instead our second proposition provides a bounding argument for a statistic that could be esti-
mated.

Proposition 2. Under Assumptions 1 and 2b, E[ϕm ]
E[ϕb ]

is a lower bound on θm
θb

. That is, θm
θb

− E[ϕm ]
E[ϕb ]

< 0 if θm
θb

< 1 and
θm
θb

− E[ϕm ]
E[ϕb ]

> 0 if θm
θb

> 1.

Appendix A.2 provides the proof. Here, we highlight there is a natural link between E[ϕm ]
E[ϕb ]

and the
change in the variance of distortion across policies, an observation made elsewhere in the misallocation
literature (Hsieh and Klenow, 2009). That is, E[ϕm ]

E[ϕb ]
> 1 when the variance of distortions increase following

the policy change while E[ϕm ]
E[ϕb ]

< 1 when the variance of distortions decrease.17

be observed.
15We take a super-population perspective whereby our set of N facilities is drawn from a super-population of facilities with lognor-

mally distributed distortions. Expectations are therefore taken over sampling uncertainty when drawing from the super-population.
16In Appendix A.2, we discuss how Assumption 2b also implies weakly positive abatement shares.
17To see this, under Assumption 1

E[ϕm]

E[ϕb]
=e

σ2
m
2 −

σ2
b
2

Since 1
2 (var(ln ϕim) − var(ln ϕib)) = σ2

m
2 − σ2

b
2 , E[ϕm ]

E[ϕb ]
> 1 when var(ln ϕim) − var(ln ϕib) > 0 and E[ϕm ]

E[ϕb ]
< 1 when var(ln ϕim) −

var(ln ϕib) < 0.
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3.3 From theory to empirics

Proposition 2 points to E[ϕm ]
E[ϕb ]

as our estimand. But estimation still requires the change in expected (though
not facility-level) distortions across policy states, which are also not directly observed. To over come this,
we turn to the first order condition for the firm problem in eq. (3), equating the marginal cost of emissions
with its marginal revenue

λsϕis = (1 + ξi)κi
piqis
eis

(7)

where κi = ∂qi
∂ei

ei
qi

> 1 is output elasticity and ξi = ∂pi
∂qi

qi
pi

is the inverse price elasticity18, both of which
may be heterogeneous across facilities. On the demand side, a growing literature documents heterogenous
markups, and thus demand elasticities, across firms even within narrow sectoral definitions (Nevo, 2001;
Hottman, Redding and Weinstein, 2016). On the supply side, firm-heterogeneity in output elasticities pro-
vides the impetus for market-based environmental policies in the first place as they related to heterogeneity
in abatement costs. Rewriting eq. 7 as average revenue per emissions, ARis =

piqis
eis

, yields

ln ARis = ln(1/(1 + ξi))− ln κi + ln λs + ln ϕis (8)

Eq. (8) suggests a possible regression specification. However, two additional considerations arise when
bringing eq. (8) to any empirical setting, both of which can be addressed using a quasi-experimental estima-
tion approach. First, there is the possibility of other changes coinciding with a policy introduction that are
left out of the structural expression. For example, the introduction of a market-based policy may coincide
with secular macroeconomic changes that jointly alters the aggregate shadow price of emissions.19 It is also
possible that macroeconomic conditions jointly alter the dispersion of distortions for treated and control fa-
cilities and that facilities differ by baseline distortions, regardless of policy, such that ϕit ∼ LN (0, σ2

i + σ2
st).

For estimation, these possibilities necessitate the use for a control group of facilities that are subject to the
same macroeconomic changes but not the change in policy in a quasi-experimental framework.

Second, the first order condition in eq. (7) may be misspecified. For example, rather than being fixed,
firm-specific demand and output elasticities may themselves be functions of distortions. If so, one wants
to quantify misallocation as a consequence of both direct distortion effects and indirect effects mediated
through changes in demand and output elasticities. A quasi-experimental approach facilitates this by pro-
viding a reduced-form effect of a policy on misallocation inclusive of all potential endogenous channels.

We implement a two-step quasi-experimental estimation procedure. The first step recovers changes in
policy-wide mean parameters. The second step estimates changes in policy-wide dispersion in distortions.
Define B as the set of control facilities and M as the set of treated facilities and let t indicate year relative to
the last year before adoption of the market-based policy. Our first step estimation involves an event study
regression analog to structural equation (8)

ln ARit = ηi︸︷︷︸
ln
(

1
1+ξi

)
−ln κi

+

{
ln λb0 if i ∈ B
ln λm0 if i ∈ M

+ γt︸︷︷︸
ln λbt−ln λb0

+ ∑
−τ≤τ≤τ

τ ̸=0

ατ Di × 1(τ = t)︸ ︷︷ ︸
(ln λmt−ln λbt)

−(ln λm0−ln λb0)

+ νit︸︷︷︸
ln ϕit+ζit

(9)

18Profit maximization requires a firm to operate in the elastic portion of its demand curve such that 1
ϵi

> −1.
19For example, an increase in aggregate demand would drive up total emissions in the no-policy scenario, Eo , increasing Eo − Es

and hence λs.
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where Di is a dummy variable that equals one for treated facility i ∈ M eventually subject to the market-
based policy. The facility-level fixed effect, ηi, captures captures facility-specific demand and supply side
parameters, ξi and κi, respectively, as well as the aggregate shadow price for each respective group in the
omitted year, or the last year before the policy change, t = 0. The year fixed effect, γt, captures any annual
changes in the aggregate shadow price for the control group relative to the omitted year. The coefficients of
interest are ατ , capturing the difference in the aggregate shadow price between treated and control facilities
in each year τ relative to that difference in the omitted year. When τ < 0, ατ tests for the presence of pre-
trends in the relative aggregate shadow price. When τ > 0, ατ examines whether the aggregate shadow
price changed due to the market-based policy. Eq. (9) is our most flexible specification, designed to detect
the presence of pre-trends and time-varying policy change effects. To obtain and average treatment effect
across the post change period, we also estimate a difference-in-differences version of eq. (9)

ln ARit =ηi + γt + αDi × 1(τ > 0) + νit (9’)

The residual νit in eq. (9) captures distortions, ln ϕit. It also contains any remaining error, ζit, perhaps
due to misspecification or mismeasurement. To recover our dispersion parameters and ultimately E[ϕm ]

E[ϕb ]
, we

square the predicted residuals ν̂it after estimating eq. (9) and estimate a similar second-stage regression

ν̂2
it = ψi︸︷︷︸

σ2
i

+

{
σ2

b0 if i ∈ B
σ2

m0 if i ∈ M

+ υt︸︷︷︸
σ2

bt−σ2
b0

+ ∑
−τ≤τ≤τ

τ ̸=0

βτ Di × 1(τ = t)︸ ︷︷ ︸
(σ2

mt−σ2
bt)

−(σ2
m0−σ2

b0)

+ϵit (10)

where the facility-level fixed effect, ψi, captures any heteroscedasticity across facilities and any baseline
difference in the dispersion of distortions between treated and treated facilities in the omitted year. The
year fixed effect, υt captures annual changes in the dispersion of distortions for the control group relative
to the omitted year.

Our main reduced-form coefficients of interest are βτ . When τ < 0, βτ tests for pre-trends in the relative
dispersion of distortions between treated and control facilities, relative to the omitted year. The flexible
function form of eq. (10) allows for the testing of pre-trends and time-varying policy change effects. When
τ > 0, βτ estimates the difference in the dispersion of distortions between treated and control facilities

due to the market-based policy, relative to the omitted year. This maps to our estimand: e
β̂τ

2 = E[ϕmt ]
E[ϕbt ]

Observe that these reduced-form coefficients incorporate any endogenous changes in firm-level parameters
- such as demand and output elasticities - in response to distortions and as such is inclusive of potential
misspecification in these parameters in the first order condition contained in eq. (7).

As with our first stage estimation, we also consider a difference-in-differences variant of eq. (10)

ν̂2
it = ψi + υt + βDi × 1(τ > 0) + ϵit (10’)

For identification, we assume that any pre-treatment difference in the squared residuals, ν̂2, between treated
and control facilities would have continued if not for the introduction of the market-based environmental
policy.

Finally, for eqs. (9), (9’), (10), and (10’), we cluster standard errors at a broader jurisdictional level (e.g.,
zip code for RECLAIM or county for the NBP) to account for arbitrary forms of spatial correlation and serial
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correlation in the residual within facilities of that jurisdiction.20

4 Data

Our empirical framework requires observing both pollution emissions and revenue at the facility level for
both regulated and unregulated facilities, and for periods before and after a market introduction. To achieve
this, we link facility-level U.S. Census restricted-use data from the Annual Survey of Manufacturing (ASM)
and the Census of Manufacturer (CM) with data on air pollution emissions and air pollution markets from
state and federal environmental agencies. We refer to the merged panel of U.S. Census data between years
of the ASM and CM as the ASMCM.

A contribution of this paper is the creation of a U.S. facility-level panel of economic and air pollution
variables. Previous papers have matched panel of US plant-level pollution to a single year of ASM data
(Shapiro and Walker, 2018) or used private plant-level data that proxy plant revenue.21 We instead match
facility level pollution data to restricted U.S. Census manufacturing economic variables over time. The fol-
lowing subsections detail the pollution data, the U.S. Census ASM and CM data, and how we link combine
them.

CARB data
Yearly plant NOx emissions and facility characteristics in California for 1990, 1993, and annually from 1995
to 2005 come from the California Air Resources Board (CARB). Emissions for the years 1991, 1992, and
1994 are not available. CARB collects criteria air pollution data under various state and federal mandates,
and is aggregated from its thirty-five local air quality districts (CARB, 2017). Under California mandates,
facilities emitting above 10 tons of criteria pollution per year are required to report emissions annually.22

This threshold is much higher at the federal level: the U.S. EPA’s national emissions inventory covers only
facilities with at least 100 tons per year of a criteria air pollutant. Since RECLAIM covers plants that emit as
low as four tons of NOx emissions per year, we follow previous studies in the literature by restricting our
control plants those in the CARB data as it covers smaller emitting facilities than data from the U.S. EPA.

The RECLAIM treatment status of plants is provided by the SCAQMD. We use the merged CARB and
SCAQMD data from Fowlie, Holland and Mansur (2012). Facility-level characteristics in the CARB data
that we use for the matching to the ASMCM (detailed below) include facility name, address, SIC code, zip
code, and county code.

U.S. EPA data
To study the NBP, facility NOx pollution emissions and facility characteristics come from the U.S EPA

National Emissions Inventory (NEI), which reports emissions of criteria pollutants for large point sources.
Since the NEI only reports emissions every three year starting in 1996, the NBP sample is constrained to

20Ideally we would cluster also at the county level for RECLAIM, however there are only 4 counties in the treated group, which
would lead to a over-rejection of the null Carter, Schnepel and Steigerwald (2017). We therefore follow Grainger and Ruangmas (2018)
who causally study the empirical effects of RECLAIM and cluster their standard errors at the zip-code level.

21For example, Cherniwchan (2017); Cui, Lapan and Moschini (2016) use the privately-constructed National Establishment Time-
Series (NETS) data which includes common unique identifiers to match facility-level outcomes such as sales and employment to
facility-level pollution from the US EPA data. One issue with the NETS is that its facility revenue is imputed using employment at the
facility level multiplied by industry sales per employee (Walls & Associates, 2020). This implies that variation in the NETS imputed
revenue is essentially driven by variation in employment.

22Criteria pollutants include particulate matter (PM), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds
(VOCs), and ammonia (NH3).
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every three years from 1996 to 2008.23 Facility-level characteristics in the NEI used in our merge with the
ASMCM (detailed below) include facility name, address, NAICS code, zip code, and county code.

To find the NBP treatment status of plants in the NEI, we supplement the NEI data with data on the
plants covered under the NBP through the U.S. EPA’s Air Market Program Data (AMPD). Through the U.S.
EPA’s Facility Registration Services (FRS), we use the common AMPD ID between the AMPD and the NEI
to find treated manufacturing plants. Since not all NEI plants include a AMPD ID, we also merge data
on the treatment status of plants from Curtis (2018) using other common U.S. EPA’s FRS IDs to find more
treated plants.24

Lastly, we obtain a measure of plant-level pollution and abatement capital expenditure from the 1999
restricted-use U.S. EPA Pollution Abatement Costs and Expenditures survey (PACE) accessed through the
U.S. Census Bureau.

U.S. Census Bureau data
We use the total value of shipment (TVS) variable included in the ASMCM as our revenue measure. The
ASM is conducted every non-census year, and the CM is conducted every 5 years. The ASM includes ap-
proximately 50,000 plants out of the CM population of about 300,000 manufacturing plants. For ASM years,
the 10,000 largest plants by revenue are selected with certainty, and the remaining 40,000 are a representa-
tive sample selected randomly. We use the U.S. Census Bureau’s Longitudinal Business Database (LBD) to
create a panel of plants linking ASM and CM data from 1990 to 2005 (Chow et al., 2021). We use the LBD
plant identifier as our main unique facility identifier for plant fixed effects in the analysis as opposed to the
facility identifier from the pollution data. This is because the LBD identifier has been continuously cleaned
and scrutinized by U.S. Census Bureau researchers over the last decades (Chow et al., 2021). We also merge
NAICS and SIC industry classifiers, zip code, and FIPS county code from the LBD to the ASMCM panel.
Using the LBD identifier, we further merge facility names and address from the U.S. Census Bureau Stan-
dard Statistical Establishment List (SSEL) (DeSalvo, Limehouse and Klimek, 2016).

Record linkage algorithm
Since there are no common unique facility identifiers between our state and federal pollution data and
the confidential ASMCM panel, we use non-unique identifiers such as facility name and address in both
datasets to create a crosswalk between the unique facility identifier in each dataset. To implement this
record linkage problem (Cuffe and Goldschlag, 2018), we develop a matching algorithm using the follow-
ing standard procedures: (1) preprocessing data, (2) sorting the data into blocks, (3) identifying potential
matches, and (4) resolving the best matches (Massey and O’Hara, 2014). We match facilities use different
combinations of non-unique identifiers, namely facility name, facility address, industry classifiers, zip code,
and county codes. Appendix B provides further details on our matching procedure.

23Since the 2005 NEI operated under a reduced budget, about 1/3 of facilities reported the same 2002 emissions for 2005 (Cui,
Lapan and Moschini, 2016). We drop these plants from both our treated and control groups.

24The AMPD also reports yearly NOx emissions for plants covered by the NBP, and other facilities covered by other US EPA air
pollution markets, like the Acid Rain Program’s (ARP).There are three reasons why we do not rely on the AMPD for NOx emissions:
(1) less than 30 out of the nearly 100 treated manufacturing plants report pre-2003 emissions and none report pre-1999 emissions,
(2) supplementing missing facility-level AMPD emissions data with NEI data risks downward biasing our results since AMPD data
records a subset of facility-level emissions relative to the NEI since it reports boiler-level and not facility-level emissions like the NEI,
and (3) there are no untreated manufacturing plants. To be included in the AMPD, a facility needs to be covered by a U.S. EPA cap-
and-trade program. For example, the control plants in Deschenes, Greenstone and Shapiro (2017) are mostly power plants covered by
the Acid Rain Program’s (ARP) SO2 cap-and-trade market, but not by the NBP. Since ARP does not cover manufacturing plants, we
cannot use this approach.
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Since our outcome variable is a natural log transformation of a ratio, we drop plants who report either zero
emissions or zero revenue. For RECLAIM, we match about 70% of the treated manufacturing plants to the
ASMCM data, and about 40% of the control plants. One reason for the differential match rate is that the
CARB data features smaller emitters that not included in the Annual Survey of Manufacturers. Indeed,
the ASM probabilistically samples the smaller manufacturers. On the other hand, the average RECLAIM
plant is a larger emitter than the average control plant in California, therefore making it more likely to be
in the U.S. Census data. Similarly, we match more than 90% of the 100 NBP manufacturing facilities to the
ASMCM data by combining our algorithm and supplementing it with the matched NBP regulated plants
to the NEI in Curtis (2018).

5 Empirical results

This section applies our empirical framework to the RECLAIM and NBP NOx cap-and-trade markets. Us-
ing event-study and difference-in-differences models, we first establish that the introduction of the markets
reduced NOx emissions, consistent with results found elsewhere in the literature. We then report the first
stage of our empirical procedure showing the effect of the pollution markets on average revenue of emis-
sions by estimating equations (9) and (9’). In our second stage, we take first-stage residuals and estimate
the market-induced change in the variance of residuals using equations (10) and (10’). Section 5.1 presents
results for RECLAIM program while Section 5.2 presents results for the NBP.

5.1 RECLAIM

We begin by estimating the effect of RECLAIM on NOx emissions, the targeted pollutant by the cap-and-
trade program. We do this both to quantify the emissions effect of RECLAIM for our sample of manu-
facturing facilities and to compare these effects with previous emissions effects reported in the literature
using a similar research design. Figure 3 presents RECLAIM NOx emissions estimates using the event-
study model in equation 9 with facility-year log NOx emissions as the outcome. To verify the quality of our
record linking procedure, we display annual coefficients for both the full sample of manufacturing facilities
available in CARB’s emissions dataset (in gold) and the matched sample following the CARB and ASMCM
data merge (in blue).

Each point represents the difference in NOx emissions changes between treated and control plants com-
pared to the year 1999, the last year before the overall cap became binding. For the CARB sample, NOx

emissions of treated plants significantly decreased compared to control plants, relative to their differences
before the cap was binding. This effect in the post-period is the same for the matched plants. For both sam-
ples, the emissions effects increase in magnitude from 2000 to 2005 as the aggregate emissions cap continues
to fall. There are also no pre-trends in NOx emission changes between the treated and control plants in the
CARB data prior to the cap binding. In the case of the matched sample, there is a pre-trend in emissions
for the treated plants compared to the control plants. However, these effects were increasing before the cap
was binding, hence trending in the opposite direction than the post-market effects. Pre-treatment emissions
effects are also not statistically distinguishable across the two samples in all years but 1990.
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Figure 3: Event-study model of the effect of RECLAIM on NOx emissions by sample

Notes: Point estimates and 95% confidence intervals of the yearly effect of RECLAIM on log NOx emissions relative to 1999 using
eq. (9). Estimates for the full sample of manufacturing facilities in CARB shown in gold. Estimates for the CARB-ASMCM matched
sample shown in blue. Standard errors are clustered at the zip code level.

Columns (1) and (2) of Table 2 reports the average treatment effect of RECLAIM on NOx emissions us-
ing the difference-in-differences specification in eq. (9’) for CARB and matched CARB-ASMCM samples,
respectively. The full sample suggests manufacturing plants covered by RECLAIM reduced their emissions
by 0.18 log points or 17% reduction compared to polluting facilities in the rest of California. While the aver-
age emissions effect for the CARB-ASMCM matched sample is a smaller 0.12 log points or 11% reduction,
it is not statistically different from the full CARB sample. This NOx emission reduction effect is broadly
consistent with causal emissions estimates from previous studies, though these studies have not separately
examined only manufacturing facilities (Fowlie, Holland and Mansur, 2012; Grainger and Ruangmas, 2018;
Mansur and Sheriff, 2021). Importantly, the reduction in total NOx emissions after the introduction of RE-
CLAIM highlights the importance of having a framework that allows total emissions target to change across
policies, as considered in Section 3.

We now turn to our main empirical results. We start with our first stage estimates of the effect of RE-
CLAIM on the economy-wide efficient shadow price of NOx emissions. If emissions decreased for RE-
CLAIM plants relative to the control plants, we should expect this to translate to an increased NOx shadow
price relative to the NOx shadow price for plants in the rest of California. Figure 4 shows the estimates ατ ,
or the difference in the shadow price for treated and control plants for each year, relative to their difference
in 1999, from equation 9. Consistent with the emission effect of the policy shown in Figure 3, the shadow
price of NOx emission increased for treated plants after the cap binds. As the aggregate cap further falls
during 2000 to 2005, the aggregate NOx shadow price trends upwards. In terms of differential pre-trends,
Figure 4 shows the shadow price of NOx emissions trending downward prior to the cap binding for treated
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plants. RECLAIM reverses this trend.

Figure 4: Event-study model of the effect of RECLAIM on NOx shadow price

Notes: Point estimates and 95% confidence intervals of the yearly effect of RECLAIM on log revenue per emissions relative to 1999,
or α̂τ using eq. (9). Standard errors are clustered at the zip code level.

Column (3) of Table 2 presents the average treatment effect of RECLAIM on log average revenue using
equation (9’). The estimated coefficient represents the effect of RECLAIM on the aggregate NOx shadow
price. Consistent with the emissions effects detected in columns (1) and (2), RECLAIM increased the aggre-
gate shadow price for NOx emissions by 14 log points or 15%.

Before turning to our theory-informed estimate of the change in allocative efficiency under RECLAIM,
we turn to two separate intuitive tests of the policy-driven change in the dispersion of distortions. We
look at, (1) the change of the variance of distortions across treated and control plants over time, and (2) we
estimate the differential treatment effects by an ex-ante measure of facility-level distortions.

First, recall that allocative inefficiencies increase as the dispersion of distortions increase. As such, if
a pollution market were to lower allocative inefficiencies, one should also see a drop in the annual cross-
sectional variance of estimated residuals, ν̂it, from eq. (9), for treated facilities relative to control facilities
after the market introduction. While the change in cross-sectional variance is not directly linked to our
theory, its intuitive connection with the dispersion in distortions can help build confidence in our eventual
theory-based measure from Section 3.2.

This is shown in Figure 5. If RECLAIM led to allocative efficiency gains in NOx emissions for treated
plants, we should expect the variance of the plant emission distortions to reduce after RECLAIM relative to
that of the control plants. Prior to the binding of the cap, the difference in variances for treated and control
facilities generally follow a similar pattern. A divergence occurs after RECLAIM binds with the variance of
treated facilities being consistently lower than that for control facilities. Figure 5 hints at allocative efficiency
gains from RECLAIM. Lower variance in residuals for treated facilities relative to control facilities suggest
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lower misallocation.

Figure 5: Difference in variance of distortions between RECLAIM treated and control plants

Notes: Blue and gold lines show the annual variance of the predicted residual, ν̂it, from equation 9 for treated and control plants,
respectively.

Second, following Bau and Matray (2023), we look at differential treatment effects by our ex-ante mea-
sure of facility-level distortion. Table 1 shows the estimates of differential effects for RECLAIM by interact-
ing the treatment variable in equation 10’ with a dummy variable equal to 1 if the regulated facility has a
lower than median average predicted residual from 9 in the pre-treatment period. The Table looks at these
differential effects on log NOx emissions and the predicted residual value. If RECLAIM is operating as
intended, we should see differential changes in emissions and predicted residual, a proxy for facility-level
distortions, for the ex-ante low versus high MAC plants.

Following the introduction of RECLAIM, high MAC treated plants increased their emissions relative
to high MAC control plants. This suggests that prior to the introduction of RECLAIM, high MAC plants
were over abating NOx emissions. Following the market introduction, low MAC plants decreased their
emissions by 47% relative to high MAC plants. This suggests that the market is working as intended, since
more emission abatement is driven by lower MAC plants, and less by high MAC plants.

Turning to the second column, we see that for RECLAIM, the market also leads to an statistically pre-
cise increase in the MAC of ex-ante low MAC plants, proxied by the predicted residual, relative to high
MAC plants, and a concurrent statistically precise reduction in the MAC by high MAC plants. We should
expect that the market leads to the MAC of regulated plants to get closer to each other, that is towards
equimarginality. Taken together, both these tests suggest that RECLAIM is leading to allocative efficiency
gains for NOx emissions.
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Table 1: Average treatment effect of RECLAIM by ex-ante MAC

ln NOx emissions ν̂it

(1) (2)

RECLAIM X Post 0.181∗∗∗ −1.247∗∗∗

(0.067) (0.286)

RECLAIM X Post X Low MAC −0.645∗∗∗ 1.384∗∗∗

(0.112) (0.230)

Observations 11,500 11,500

Notes: Estimates of the differential effect of RECLAIM by whether a treated plant had a lower than median average predicted residual
from eq 9 in the pre-treatment period for log NOx emissions and predicted residuals across columns. All models include plant and
year fixed effects. Robust standard errors clustered at the zip code level in parentheses.

The top panel of Figure 6 shows our main allocative efficiency effect for RECLAIM, plotting estimates
β̂τ from eq. (10). In the post period, β̂τ is consistently negative, implying allocative efficiency gains. They
are also downward trending, indicating allocative efficiency gains that improve over time. Pre-trend co-
efficients suggests there were no strong differential effect on the dispersion of NOx emission distortions
between control and treated plants in California before the RECLAIM cap was binding. If anything, the
dispersion of distortions for treated plants were trending in an opposite direction. The bottom panel of

Figure 6 presents the corresponding allocative efficiency measure, 1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂τ

2 . RECLAIM has in-

creased allocative efficiency by about 10 percentage points. This effect increases in magnitude over time at
an annual rate of roughly 2 percentage points.
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Figure 6: Annual effects of RECLAIM on allocative efficiency

Notes: Top panel shows point estimates and 95% confidence intervals of the yearly effect of RECLAIM on squared residuals relative

to 1999, or β̂τ using eq. (10). Bottom panel shows for 1 − Ê[ϕm ]
τ

Ê[ϕb ]
τ = 1 − e

β̂τ

2 . Standard errors are clustered at the zip code level.

Column (4) of Table 2 presents the average treatment effect of RECLAIM on the dispersion of distortions
or β̂ from equation (10’). Column (4) also shows the implied lower bound on the change in allocative

efficiency, 1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂
2 . RECLAIM market led to allocative efficiency gains in NOx emissions of

10 percentage points. Under the assumptions maintained in Proposition 1, θ̃ is a lower bound on, θ, the
theory-based changed in allocative efficiency. These estimates provides causal evidence that RECLAIM led
to improvements in allocative efficiency in NOx emissions.
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Table 2: Average treatment effects of RECLAIM

ln NOx emissions ln NOx emissions ln ARit ν̂2
it

(1) (2) (3) (4)

RECLAIM X Post −0.182∗∗∗ −0.116∗ 0.142∗ −0.215∗∗

(0.049) (0.062) (0.073) (0.092)

1 − Ê[ϕm ]

Ê[ϕb ]
0.102

[0.017, 0.179]

Observations 27,000 11,500 11,500 11,500
Sample CARB Matched Matched Matched

Notes: Estimates of the average treatment effect of RECLAIM using a difference-in-difference model. All models include year- and
facility-level fixed effects. Columns (1) and (2) examine log NOx emissions as outcome using eq. (9). Column (3) models log average
revenue per emissions as outcome using eq. (9’). Column (4) models the squared predicted residuals from eq. 9 as outcome using eq.
(10). Column (1) uses the full CARB sample of manufacturing plants and the CARB facility identifier for facility fixed effects. Columns
(2)-(4) uses the matched CARB-ASMCM sample and the LBD facility identifier for facility fixed effects. The lower bound on allocative

efficiency change is 1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂
2 . Robust standard errors clustered at the zip code in parentheses, and 95% confidence interval

in brackets.

Table 3 estimates 1 − Ê[ϕm ]

Ê[ϕb ]
for each 2-digit SIC manufacturing sector by re-estimating eq. (10) in which

the treatment variable is interacted with industry indicators. We find 1 − Ê[ϕm ]

Ê[ϕb ]
> 0 for every sector, sug-

gesting that allocative efficiency gains are shared broadly. These effects, however, are only statistically
different from zero at the 5% level for petroleum refineries and primary metal manufacturers, possibly due
to reduced statistical power.

Table 3: Allocative efficiency effect of RECLAIM by industry

Industry 1 − Ê[ϕm ]

Ê[ϕb ]
95% CI

Petroleum refineries (SIC 29) 0.171 [0.044, 0.281]
Primary metal manufacturing (SIC 33) 0.143 [0.07, 0.211]
Other manufacturing 0.083 [-0.035, 0.187]
Cement and glass manufacturing (SIC 32) 0.076 [-0.003, 0.149]
Secondary metal manufacturing (SIC 34) 0.062 [-0.131, 0.221]
Food manufacturing (SIC 20) 0.035 [-0.093, 0.149]

Notes: Point estimates and 95% confidence interval of allocative efficiency effect, 1 − Ê[ϕm ]

Ê[ϕb ]
, by industry. Robust standard errors are

clustered at the zip code level.

Following the data cleaning procedure in Lyubich, Shapiro and Walker (2018), we also replicate the re-
sults of Table 2 using a sample that was trimmed for extreme changes in emissions or revenue are 100X
greater than the 99th percentile change or 100X smaller than the 1th percentile change. The average RE-
CLAIM effects on NOx emissions, average revenue of emissions (i.e., eq. 9’), and the dispersion of residuals
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(i.e., eq. 10’) for the trimmed sample shown in Table A2 are quantitatively similar to those in Table 2.25

Also, in order to account for differential time trends in the effects of RECLAIM shown in Figures 3, 4 and 6,
Table A1 estimates a trend-break version of the difference-in-differences models 9’ and 10’. The trend-break
model results are consistent with the previous event-study and DID model results.

Results in this section show that RECLAIM led to reductions in NOx emissions, increases in the NOx

shadow price, and led to increase allocative efficiency of NOx emissions across regulated plants, as at in-
creasing rate over time. The next sections explores a similar analysis for the NBP NOx emission market.

5.2 NOx Budget Program

This section presents our results for the NBP emission market. Because the U.S. EPA’s NEI data is available
triennially, NBP results use data every three years from 1996 to 2008.

Figure 7 presents the NBP effects on NOx emissions by changing the outcome variable in the event-study
model presented in equation 9. The coefficients capture the difference in NOx emission changes between
treated and control manufacturing plants compared to the difference in 2002 before the introduction of the
market in 2003. The post-treatment period coefficients suggest that the program lowered NOx emissions,
especially 5-years after its introduction. Coefficients in the pre-treatment period are not statistically differ-
ent than zero, therefore suggesting a lack of differential pre-trends across the treated and control plants, a
necessary condition for causal identification in event-study and difference-in-differences models.

Column (1) of Table 5 presents the average treatment effect of the NBP on NOx emissions. The NBP
market reduced annual manufacturing facility emissions by about 29% (e−0.342 − 1). For the NEI sample
period used in this study, there does not exist a longitudinal facility identifier. Therefore, we cannot com-
pare the NOx emission effect across the NEI-ASMCM matched sample, and an NEI-only sample to verify
the quality of the matching procedure as we do for the NOxemission effect for RECLAIM in Figure 3. In-
stead, as a basis for comparison, using a triple-differences research design applied to a sample of power
plants, Deschenes, Greenstone and Shapiro (2017) find that the NBP lowered seasonal NOx emissions by
44%, which is included in the 95% confidence interval of our average treatment on emissions.

25Ideally, we would replicate the event-study figures 3, 4 and 6, but due to disclosure requirements from the US Census Bureau on
sample sizes, we could only output the average treatment effects shown in Table A2.
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Figure 7: Event-study model of the effect of NBP on NOx emissions

Notes: Point estimates and 95% confidence intervals of the yearly effect of NBP on log NOx emissions relative to 2002, the year before
the NBP was introduced, using eq. (9). Standard errors are clustered at the county level.

Figure 8 shows the effect of the NBP on average revenue per emissions using eq. (9’), which following
Section 3.3 can be interpreted as the aggregate shadow-price of emissions under efficient allocation. Esti-
mates indeed show an increase in the shadow price after the introduction of the NBP, consistent with the
negative NBP emissions effect. The coefficients in the pre-treatment period suggest a lack of differential
pre-trends across treated and control plants.

Interestingly, these estimates of the NBP aggregate NOx shadow price in Figure 8 qualitatively mirrors
the marginal pollution tax effect found in Figure 6 in Shapiro and Walker (2018). Using a structural model,
the authors find that the NBP increased the pollution tax of covered manufacturing plants by 1.195 log
point. Our quasi-experimental estimate shows a 0.452 log point increase. Indeed, column (2) of 5 presents
the average treatment effect of NBP on average revenue of emissions, or α from eq. 9. The estimate suggests
an increase of 57% in aggregate NOx price under efficient allocation for treated plants.
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Figure 8: Event-study model of the effect of NBP on NOx shadow price

Notes: Point estimates and 95% confidence intervals of the yearly effect of NBP on log revenue per emissions relative to 2002, or α̂τ

using eq. (9). Standard errors are clustered at the county level

As with RECLAIM, before turning to our main estimating equation 10, we first look at two more in-
tuitive tests for whether the NBP altered allocative efficiency, namely (1) the change in the annual cross-
sectional variance in estimated residuals, and (2) the differential treatment effect by ex-ante measure of
plant-level MAC.

First, we consider the annual cross-sectional variance in estimated residuals, ν̂it, separately for treated
and control facilities. Unlike with RECLAIM, Figure 9 does not shows a clear change in trends in variance of
predicted residuals across treated and control facilities. The two time series exhibit roughly similar trends
both before and after the introduction of NPB, suggesting that allocative efficiency changes may have been
limited under the NBP. If anything, the crossing of the lines between 2005 and 2008 suggest allocative
inefficiency increased for manufacturing plants under the NBP.

We now look at differential treatment effects by our ex-ante measure of facility-level distortion as in
Bau and Matray (2023). Table 4 shows the estimates of differential effects for the NBP by interacting the
treatment variable in equation 10’ with a dummy variable equal to 1 if the regulated facility has a lower than
median average predicted residual from 9 in the pre-treatment period. The Table looks at these differential
effects on log NOx emissions and the predicted residual value.

Following the introduction of the NBP, high MAC plants didn’t change their emissions, while low MAC
plants decreased their emissions by 46% relative to high MAC plants. It appears that the market is working
for low MAC plants, since more emission abatement is driven by lower MAC plants, however emissions
are not increasing for ex-ante high MAC plants. The story is similar for the second column of Table 4. We
see that the market does not lead to a statistically precise decrease in the MAC for ex-ante high MAC plants,
while it lead to the an increase in the MAC, proxied by the predicted residual, of ex-ante low MAC plants
relative to high MAC plants. We are therefore left with imprecise evidence of the overall performance of
the market, i.e. it is working as expected for for low ex-ante MAC plants but not high MAC plants. We now
turn to the formal test of the overall market allocative efficiency effect of the NBP for manufacturing plants.
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Table 4: Average treatment effect of NBP by ex-ante MAC

ln NOx emissions ν̂it

(1) (2)

NBP X Post 0.009 −4.696
(0.074) (5.291)

NBP X Post X Low MAC −0.613∗∗ 1.848∗∗

(0.262) (0.748)

Observations 32,500 32,500

Notes: Estimates of the differential effect of NBP by whether a treated plant had a lower than median average predicted residual from
eq 9 in the pre-treatment period for log NOx emissions and predicted residuals across columns. All models include plant and year
fixed effects. Robust standard errors clustered at the county level in parentheses.

Figure 9: Difference in variance of plant level distortions between NBP treated and control plants

Notes: The blue and gold lines show the yearly variance of the predicted residual, ν̂it, from equation 9 for treated and control plants,
respectively.

We now turn to our main estimate of the allocative efficiency effect of the NBP. The top panel of Figure
10 plots estimates of βτ from eq. (10) or the effect of NBP on the squared residual of average revenue per
emissions. Coefficients before and after the NBP are not statistically significant. If anything, the positive
post-treatment coefficient suggests a slight increase in misallocation from the policy. The bottom panel of

Figure 10 presents the corresponding allocative efficiency measure, 1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂τ

2 , where a decrease

in the measure translates to a decrease in allocative efficiency.
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Figure 10: Annual effects of NBP on allocative efficiency

Notes: Top panel shows point estimates and 95% confidence intervals of the yearly effect of NBP on squared residuals relative to 2002,

or β̂τ using eq. (10). Bottom panel shows 1 − Ê[ϕm ]
τ

Ê[ϕb ]
τ = 1 − e

β̂τ

2 . Standard errors are clustered at the county code level.

The last column of Table 5 show the average treatment effect of NBP on squared residuals, or β̂ from

eq. (10), and our related measure of allocative efficiency changes, 1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂
2 . The table suggest an

imprecise increase in allocative inefficiency as a result from the policy.
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Table 5: Average treatment effect of NBP

ln NOx emissions ln ARit ν̂2
it

(1) (2) (3)

NBP X Post −0.257∗∗ 0.471∗∗∗ 0.124
(0.123) (0.151) (0.134)

1 − Ê[ϕm ]

Ê[ϕb ]
-0.064

[-0.213, 0.067]

Observations 32,500 32,500 32,500

Notes: Estimates of the average treatment effect of NBP using a difference-in-differences model. All models include year- and facility-
level fixed effects. Columns (1) examines log NOx emissions as outcome using eq. (9). Column (2) models log average revenue per
emissions as outcome using eq. (9’). Column (3) models the squared predicted residuals from eq. 9 as outcome using eq. (10). The

lower bound on allocative efficiency change is 1− Ê[ϕm ]

Ê[ϕb ]
= 1− e

β̂
2 . Robust standard errors clustered at the county level in parentheses,

and 95% confidence interval in brackets.

Table 6 estimates 1 − Ê[ϕm ]

Ê[ϕb ]
for 3 different manufacturing sectors by re-estimating eq. (10) in which

the treatment variable is interacted with industry indicators.26 We find 1 − Ê[ϕm ]

Ê[ϕb ]
< 0 for every sector,

suggesting small reductions in allocative efficiency across sectors. However, these results are statistically
indistinguishable from zero for all sectors.

Table 6: Allocative efficiency effect of NBP by industry

Industry 1 − Ê[ϕm ]

Ê[ϕb ]
95% CI

Paper manufacturing (NAICS 322) -0.067 [0.054, -0.202]
Refineries (NAICS 324 and 325) -0.003 [0.12, -0.144]
Other manufacturing -0.1 [0.116, -0.368]

Notes: Point estimates and 95% confidence interval of allocative efficiency effect, 1 − Ê[ϕm ]

Ê[ϕb ]
, by industry. Robust standard errors are

clustered at the county code level.

As for RECLAIM, we also replicate the main NBP results using a similar data trimming procedure as in
Lyubich, Shapiro and Walker (2018), where facilties are dropped if changes in NOx emissions or revenue
are more than the 100 times the 99th percentile or less than 100 times the 1 percentile of changes. Figures
A3 to A5 show that the main results for NOx emissions, average revenue, and allocative efficiency for the
effect of the NBP are robust to trimming the estimation sample.

We have shown that following the introduction of the RECLAIM and NBP NOx emission markets,
average emissions of regulated plants go down, and the NOx shadow price increases. However, these
effects do not necessarily imply allocative efficiency gains. Indeed, we only identify statistically significant

26Due to disclosure requirements from the US Census Bureau on sample sizes, these three industry groups are the most disaggre-
gated categories for which we could output results.
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improvements in allocative efficiency of NOx emissions for plants covered by RECLAIM. The following
section explores potential mechanisms to explain this result.

6 Mechanisms

Why did RECLAIM but not the NBP deliver allocative efficiency gains? Where did allocative efficiency
gains come from? To shed light on these questions, we conduct a series of heterogeneity analyses between
the emission markets and within each market.

6.1 Between markets

We first focus on differences across the two NOx emission markets to help rationalize the evidence of cost-
savings from RECLAIM but not the NBP. Particularly, we focus on heterogeneity in plausible proxies of
MAC for covered plants in the markets prior to the introduction of each programs. We use proxies, since the
MAC of plants is typically thought of as unobserved. Intuitively, all else equal, a set of covered polluting
facilities with greater ex-ante heterogeneity in MAC should have greater potential cost-savings from the
introduction of an emissions market as opposed to a less flexible environmental regulation to achieve the
same aggregate emission reduction target.

More formally, this is what Newell and Stavins (2003) show. They derive an analytical model to estimate
the cost-savings of implementing market-based versus other environmental policy instruments. Using a
second-order approximation of the regulated entity’s cost function, Newell and Stavins (2003) show that
potential cost-savings in implementing a market-based policy depends on the coefficients of variation of
the slope and intercept of the linear MAC curves of regulated entities. While not explicitly incorporated
in their model, the authors highlight differences in location, age, size, and production technology as likely
underlying characteristic that explain heterogeneity in MAC of covered plants by a policy.

We draw inspiration from the analytical result in Newell and Stavins (2003) by presenting in Table 7 the
ex-ante coefficient of variation (CV) of plausible proxies for differences in MAC for regulated manufactur-
ing plants under RECLAIM and NBP. Specifically, we include the CV of predicted residual from equation 9,
since they include a measure of facility-specific distortion which is closely related to MAC in our theoretical
framework. We also look at the CV of total of value of shipment, NOx emissions, total capital expenditures,
total employment, plant age, pollution and abatement capital expenditures. Lastly, we also consider the
number of unique NAICS-6 industries amongst the covered facilities, as a proxy for diversity of production
technologies.
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Table 7: Ex-ante heterogeneity of MAC across NOx emission markets

Variable ν̂it TVS NOx Capital exp. Emp. Age PACE NAICS

RECLAIM 0.86 2.36 3.66 3.06 2.71 0.43 3.72 100
NBP 0.54 1.77 1.21 1.63 1.95 0.33 2.52 30

Statistic CV CV CV CV CV CV CV Count

Notes: The first seven columns show the coefficient of variations across different proxy variables for the marginal abatement cost of
treated plants covered by either emission markets in the pre-treatment period. For RECLAIM, the pre-treatment period is before 2000,
and it is before 2003 for the NBP. The last column shoes for the same periods andthe unique numbers of 6-digit NAICS in the treated
plants. ν̂it are the predicted residuals from eq. 9. All statistics are calculated over the full pre-treatment period, with the exception of ν̂it
for the NBP which omits the year 1990 because of an outlier plant which cannot be dropped for disclosure requirements as explained
in section XYZ. TVS = Total value of shipment. Capital exp. = Capital expenditures. Emp. = Total employment. PACE = Pollution and
abatement capital expenditures. CV = coefficient of variation.

The overall takeaway from Table 7 is that across all measures, the degree of ex-ante heterogeneity is
systematically larger for the set of RECLAIM manufacturing facilities as opposed to the set of manufactur-
ing plants under the NBP. In line with Newell and Stavins (2003), these stylize facts suggest that there are
more potential cost-savings from implementing a market-based environmental policy for the manufactur-
ing plants covered in RECLAIM versus the NBP. While not a definitive test, we view this as evidence which
helps rationalize the ranking of allocative efficiency gains across the two emission markets.

Unfortunately, this test does not explain fully why there are no gains to be found under NBP for its man-
ufacturing plants. In the next section, we explore differences in allocative efficiency gains within market
participants in each program.

6.2 Within market

We now turn to heterogeneity analysis within each NOx emission market to explore potential channels that
can either dampen or improve allocative efficiency gains. Within each market, we focus on heterogeneity
analyses centered on institutional features and facility characteristics.

First, heterogeneity results point to the importance of plant and firm-level flexibility of pollution abate-
ment options in order to achieve greater allocative efficiency gains from pollution markets. Column (1) of
Table 8 interacts the treatment variable with a dummy variable equal to one if it is operated by a multi plant
firm.27 The uninteracted coefficient therefore represents the allocative efficiency gains from RECLAIM for
single plant firms. One hypothesis is that firms with more than one plant might have more abatement
reallocation options than firms that only operate a single plant. This logic is consistent with prior work
that has shown increased production or abatement flexibility by multi-plant firms (Gibson, 2019; Cui and
Moschini, 2020). The interacted coefficient suggests that there are imprecisely estimated small allocative
efficiency gains for multi-plant firms relative to single plant firms from the market. Unfortunately, since
NBP regulated manufacturing plants are on average larger than RECLAIM regulated facilities, there are no
single plant firms in the NBP treated sample, and therefore the same exercise cannot be replicated.

27The presence of multi-plant firms operating facilities both inside and outside of RECLAIM presents a potential SUTVA violation
through reallocation of production or emissions to control plants. Table A3 replicates our main estimate and column (1) of Table 8
without these firms. The overall allocative efficiency effect is statistically indistinguishable from our main estimate in column (4) of
Table 2. Table A3 also confirms the qualitative result of larger efficiency gains for multi-facility firms in the sample where multi-facility
firms that operate plants both inside and outside of RECLAIM are dropped.
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Table 8: Within market heterogeneity estimates for RECLAIM

ν̂2
it ν̂2

it

(1) (2)

RECLAIM X Post −0.187∗∗ −0.207∗∗

(0.087) (0.097)

RECLAIM X Post X Multi-plant firm −0.044
(0.080)

RECLAIM X Post X Inland −0.040
(0.081)

Observations 11,500 11,500

Notes: Estimates of the effect of RECLAIM on the dispersion of distortions. Column (1) interacts the treatment variable with a dummy
equal to one if the treated firm is a multi-plant firm. Column (2) interacts the treatment variable with a dummy equal to one if the
treated plant is located in the Inland counties without permit trading restrictions. All models include plant and year fixed effects.
Robust standard errors clustered at the zip code level in parentheses.

Second, institutional features can play a role in both temporal and spatial dimensions. Theoretical pa-
pers highlighting the importance of policy commitment by regulators to incentivize efficient abatement
behavior by firms (Requate, 2005). For RECLAIM, this result is empirically exemplified by the increasing
efficiency gains from the policy over time shown in the previous section in Figure 6. Column (2) of Table
9 interacts the treatment variable with a dummy equal to one if the plant is coverd by the NOx emission
market under the US EPA Clean Air Interstate Rule (CAIR) which superseded the NBP market after 2008.
Slightly more than half of the NBP covered manufacturing plants ended up being also covered by the CAIR
market. In the case of the NBP, greater efficiency gains are seen for plants that were covered by the CAIR
NOx markets compared to manufacturing plants only covered by the NBP. However, this is a noisily esti-
mated coefficient. Taken together, the gains over time in RECLAIM, and the positive coefficient for CAIR
covered NBP facilities provides tentative evidence of the importance of the regulator’s time commitment
to the environmental market in delivering allocative efficiency gains.

33



Table 9: Within market heterogeneity estimates for NBP

ν̂2
it ν̂2

it

(1) (2)

NBP X Post 0.124 0.160
(0.143) (0.238)

NBP X Post X Updating allocation −0.001
(0.261)

NBP X Post X CAIR −0.054
(0.242)

Observations 32,500 32,500

Notes: Estimates of the effect of RECLAIM on the dispersion of distortions. Column (1) [NEED TO ADJUST THIS]. Column (2)
interacts the treatment variable with a dummy equal to one if the treated plant is covered by the Clean Air Interstate Rule (CAIR) NOx
market after 2008 which superseded the NBP. All models include plant and year fixed effects. Robust standard errors clustered at the
county code level in parentheses.

More tentative evidence on institutional details also points to restrictions in trading as hindering effi-
ciency gains. Indeed, under RECLAIM two trading zone partially restricted the trading of permits across
zones. Column (2) in Table 8 interacts the treatment variable with a dummy equal to one if the regulated
facility is located in the unrestricted trading zone. Plants in the unrestricted trading zone saw greater al-
locative efficiency gains. The importance of transaction costs for the cost-effectiveness of environmental
markets has been highlighted theoretically by Stavins (1995) .

Previous work as also shown that fixed versus updating allocation of permits for electricity producers
covered by the NBP affected production decisions (Lange and Maniloff, 2021). Column (1) of Table 9 inter-
acts the treatment variable with a dummy equal to one if a manufacturing plant is location in a NBP state
that adopted updating allocation of permits as opposed to a fixed allocation scheme. The coefficient noisily
rejects any differences in allocative efficiency gains for manufacturing plants covered by the NBP in state
with updating or fixed allocation schemes. While this result is at odds with (Lange and Maniloff, 2021), the
authors do not look at manufacturers, and do not directly look at allocative efficiency but production.

The above heterogeneity analysis provides some support to the importance of ex-ante heterogeneity
in MAC across regulated facilities, plant and firm abatement flexibility and regulatory commitment in en-
abling environmental markets to deliver cost-savings. Unfortunatley given relative small number of treated
manufacturing plants across both markets and disclosure requirements of the U.S. Census Bureau, we are
limited in the number and types of heterogeneity analysis we can conduct. Qualitatively, other differences
across markets could help explains allocative efficiency differences. We speculate three possible explana-
tions. First, unlike RECLAIM which replaced prescriptive regulations, the NBP was overlaid onto prescrip-
tive regulations that continued after the market’s introduction (Fowlie, Holland and Mansur, 2012). Insofar
as those regulations continued to bind, improvements in allocative efficiency will be limited. Second, the
NBP was a summer-only pollution market which limits facilities from adopting pollution abatement op-
tions that can only be made seasonally. Third, the asymmetric deregulation of the electricity output market
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around the introduction of the NBP affected the decision of electricity producers. This matters because the
electricity sector accounts about 90% of market participants and emissions in the NBP, and hence distor-
tions in electricity producers abatement decisions will in turn affect abatement decisions of manufacturing
participants. Fowlie (2010) finds that abatement investment decisions by NBP electricity plants differed
from the first-best depending on the electricity market regulation they faced. Mansur (2008) furthermore
finds evidence for market power enforced by electricity producers in the deregulated markets. Fizsbein
et al. (2020) find empirical evidence that distortionary decisions in output markets can spillover to input
markets. Therefore, both the documented asymmetric economic regulation and market power by electric-
ity producers covered by the NBP likely affected the ability of manufacturers covered by the NBP to make
allocatively efficient decisions. In the case of RECLAIM, the majority of participants are manufacturers
instead of electricity producers.

7 Conclusion

Market-based interventions hold the promise of improving allocative inefficiencies in settings where prices
are otherwise missing. Pollution provides a classic example: the introduction of a market can in theory ef-
ficiently allocate emissions across heterogeneous polluters, lowering the total cost of meeting an aggregate
pollution target compared with more prescriptive regulations. However, validating this prediction is fun-
damentally difficult: the lack of prices before the introduction of a pollution market makes it challenging to
determine the change in allocative efficiency due to the market.

In this paper, we develop a framework for empirically testing the change in allocative efficiency across
two arbitrary policy regimes when input prices are unobservable. We lean on a producer’s first order
condition to relate its observed average revenue of emissions to its unobservable marginal product of emis-
sions. We then show how a difference-in-differences research design links a quasi-experimental estimator
to the theory-based change in allocative efficiency. In contrast to prior approaches, our framework does
not assume that a market-based policy necessarily improves allocative efficiency. The resulting two-sided
statistical test is consistent with second-best theories showing it is possible for a pollution market to not
only have limited allocative efficiency gains, but in some cases even efficiency losses. In doing so, we add
to an emerging literature using quasi-experimental approaches to quantify the aggregate consequences of
input misallocation. Here, our key contribution is that our framework can be applied to settings where a
new market is being introduced.

We study the introduction of two landmark U.S. air pollution cap-and-trade markets aimed at reducing
NOx emissions: Southern California’s Regional Clean Air Incentives Market (RECLAIM), and the eastern
U.S. NOx Budget Program (NBP). This requires developing a linking algorithm to match manufacturing
facility emissions data from regional and national environmental agencies with restricted-use revenue data
from the U.S. Census of Manufacturers and the Annual Survey of Manufacturing. We find that RECLAIM
improved allocative efficiency by 10 percentage points in the six years after its cap starts binding. This effect
grows by 2 percentage points annually.

By contrast, we do not find evidence of allocative efficiency gains for manufacturing plants covered by
the NBP. We rationalize this result through the observation that across a wide range of underlying char-
acteristics of MAC of regulated plants, baseline heterogeneity of MAC is systematically greater for the set
of manufacturing plants covered by RECLAIM than under the NBP. Furthermore, heterogeneity analyses
also suggest the plant and firm-level flexibility in pollution abatement options, and the regulator’s time
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commitment to the policy matter for the efficiency gains of pollution markets. Taken together, these results
highlight the conditions whereby market-based environmental policies may deliver promised allocative
efficiency gains and when those gains may be limited.
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A Theory appendix

A.1 Proposition 1

It is obvious from eq. (5) that if there is allocative efficiency with ϕis = 1 ∀i then θs = 1. To establish that
θs = 1 implies efficiency, we rewrite θs as

θs = NE[aisϕis]

= NE[ais]E[ϕis] + Ncov(ais(ϕis), ϕis)

= eσ2
s /2 + Ncov(ais(ϕis), ϕis)

where the second line applies the covariance definition and the third line uses ∑i ais = 1 and E[ϕis] =

eσ2
s /2 when ϕis ∼ LN (0, σ2

s ) from Assumption 1. Observe that because eσ2
s /2 ≥ 1, θs = 1 or 1−eσ2

s /2

N =

cov(ais(ϕis), ϕis) is satisfied under two cases: (i) when cov(ais(ϕis), ϕis) < 0 and eσ2
s /2 > 1 and (ii) when

cov(ais(ϕis), ϕis) = 0 and eσ2
s /2 = 1. Note that

cov(ais(ϕis), ϕis) =E[ϕisais(ϕis)]− E[ϕis]E[ais(ϕis)]

=E[ϕisais(ϕis)− eσ2
s ∗ ais(ϕis)]

=E[(ϕis − eσ2
s )ais(ϕis)]

=E[(ϕis − eσ2
s )(ais(ϕis)− ais(eσ2

s )]

where the final line follows from E[(ϕis − 1)ais(ϕis)c]=0 for any constant c, in this case eσ2
s . By Assumption

2a, a increasing in ϕ implies (ϕis − eσ2
s )(ais(ϕis)− ais(eσ2

s )) ≥ 0 and thus cov(ais(ϕis), ϕis) ≥ 0. This rules out
case (i). Next observe that (ϕis − eσ2

s )(ais(ϕis)− ais(eσ2
s )) = 0 only when ϕis = 1, ∀i, in which case σ2

s = 0
and eσ2

s /2=1. Thus, we have case (ii) in which cov(ais(ϕis), ϕis) = 0 and eσ2
s /2 = 1, which implies ϕis = 1

∀i. That is, under Assumptions 1 and 2a, θs = 1 implies allocative efficiency, or ϕis = 1 ∀i, establishing
Proposition 1a.

To show that θs is increasing in the dispersion of distortions, σ2
s , we must establish that

dθs

dσ2
s
=

deσ2
s /2

dσ2
s

+ N
dcov(ais(ϕis), ϕis)

dσ2
s

> 0

where the first right hand side term is positive. Turning to the second right hand side term and dropping
subscripts, it is sufficient to establish dcov(a(ϕ),ϕ)

dE[ϕ] > 0. Observe that we can define h(ϕ) = m + u where h()

is increasing u is functionally independent of m, or ϕ = h−1(m + u), allowing us to write

dcov(a(ϕ), ϕ)

dE[ϕ]
=

dcov(a(ϕ), ϕ)

dm
dm

dE[ϕ]

where because h() is increasing u is functionally independent of m, E[ϕ] is increasing in m and vice-versa.
Thus establishing dcov(a(ϕ),ϕ)

dE[ϕ] > 0 requires dcov(a(ϕ),ϕ)
dm > 0. Applying cov(a(ϕ), ϕ) = E[ϕa(ϕ)]− E[ϕ]E[a(ϕ)]

43



and taking a derivative, we have

dcov(a(ϕ), ϕ)

dm
= E

[
a(ϕ) + ϕa′(ϕ)

h′(ϕ)

]
− E[a(ϕ)]E

[
1

h′(ϕ)

]
− E[ϕ]E

[
a′(ϕ)
h′(ϕ)

]
= cov

(
a(ϕ),

1
h′(ϕ)

)
+ E[a(ϕ)]E

[
1

h′(ϕ)

]
+ cov

(
ϕ,

a′(ϕ)
h′(ϕ)

)
+ E[ϕ]E

[
a′(ϕ)
h′(ϕ)

]
− E[a(ϕ)]E

[
1

h′(ϕ)

]
− E[ϕ]E

[
a′(ϕ)
h′(ϕ)

]
= cov

(
a(ϕ),

1
h′(ϕ)

)
+ cov

(
ϕ,

a′(ϕ)
h′(ϕ)

)
= cov(a(ϕ), ϕ) + cov(ϕ, a′(ϕ)ϕ)

where ones applies the Leibniz integral rule and the inverse function theorem after the first equality and
the covariance definition after the second equality. The last equality follows under Assumption 1, whereby
a lognormal distribution implies h() = ln() such that h′(ϕ) = 1/ϕ. By Assumption 2a, a increasing in ϕ

implies cov(a(ϕ), ϕ) ≥ 0. By Assumption 2b, a′(ϕ)ϕ increasing in ϕ implies cov(ϕ, a′(ϕ)ϕ) ≥ 0. This implies
dθs
dσ2

s
> 0, establishing Proposition 1b.

A.2 Proposition 2

We expand θm
θb

from eq. (6)

θm

θb
=

N(E[aim]E[ϕim] + cov(ϕim, aim))

N(E[aib]E[ϕib] + cov(ϕib, aib))

=
E[ϕim]

E[ϕib]

[
1 + N

(
cov(ϕim, aim)

E[ϕim]
− cov(ϕib, aib)

E[ϕib]

)]
+O2

≈E[ϕim]

E[ϕib]

1 + N

 cov(ϕim, aim)

E[ϕim]︸ ︷︷ ︸
Zm

− cov(ϕib, aib)

E[ϕib]︸ ︷︷ ︸
Zb


 (A.1)

where the first line applies the definition of a covariance; second line applies a Taylor expansion around
E[ϕim] and E[ϕib] and uses ∑i ais = 1; and the third line retains first order term of the Taylor series as an
approximation.

To establish Proposition 2, we must demonstrate dZs/dE[ϕis] > 0. When E[ϕim ]
E[ϕib ]

< 1 or E[ϕim]− E[ϕib] <

0, having Zm − Zb < 0 implies θm
θb

< E[ϕim ]
E[ϕib ]

and thus E[ϕim ]
E[ϕib ]

is a lower bound on the true allocative efficiency

gain θm
θb

. Conversely, when E[ϕim ]
E[ϕib ]

> 1 or E[ϕim]− E[ϕib] > 0, having Zm − Zb > 0 implies θm
θb

> E[ϕim ]
E[ϕib ]

and

so E[ϕim ]
E[ϕib ]

is a lower bound on the true allocative efficiency loss θm
θb

.
First, observe that we can define h(ϕ) = m + u where h() is increasing u is functionally independent of

m, or ϕ = h−1(m + u), allowing us to write

dZ
dE[ϕ]

=
dZ
dm

dm
dE[ϕ]

where because h() is increasing u is functionally independent of m, E[ϕ] is increasing in m and vice-
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versa. Thus establishing dZ
dE[ϕ] > 0 requires dZ

dm > 0. Rearranging Zs into ZsE[ϕis] = cov(ϕis, ais(ϕis)) =

E[ϕisais(ϕis)]− E[ϕis]E[ais(ϕis)], dropping subscripts, and taking a derivative, we have

dZ
dm

E[ϕ] + ZE
[

1
h′(ϕ)

]
= E

[
a(ϕ) + ϕa′(ϕ)

h′(ϕ)

]
− E[a(ϕ)]E

[
1

h′(ϕ)

]
− E[ϕ]E

[
a′(ϕ)
h′(ϕ)

]
= cov

(
a(ϕ),

1
h′(ϕ)

)
+ E[a(ϕ)]E

[
1

h′(ϕ)

]
+ cov

(
ϕ,

a′(ϕ)
h′(ϕ)

)
+ E[ϕ]E

[
a′(ϕ)
h′(ϕ)

]
− E[a(ϕ)]E

[
1

h′(ϕ)

]
− E[ϕ]E

[
a′(ϕ)
h′(ϕ)

]
= cov

(
a(ϕ),

1
h′(ϕ)

)
+ cov

(
ϕ,

a′(ϕ)
h′(ϕ)

)
⇒ dZ

dm
=

1
E[ϕ]

(
cov

(
a(ϕ),

1
h′(ϕ)

)
+ cov

(
ϕ,

a′(ϕ)
h′(ϕ)

)
− cov (ϕ, a(ϕ))

E[ϕ]
E
[

1
h′(ϕ)

])
where ones applies the Leibniz integral rule and the inverse function theorem after the first equality and
the covariance definition after the second equality. The last line follows by rearranging terms and dividing
by E[ϕ]. Under Assumption 1, a lognormal distribution implies h() = ln() such that h′(ϕ) = 1/ϕ. This
implies

dZ
dm

=
cov(ϕ, a′(ϕ)ϕ)

E[ϕ]

Under Assumption 1, E[ϕ] > 0, thus the sign of dZ
dm has the sign of cov(ϕ, a′(ϕ)ϕ), which is positive if

a′(ϕ)ϕ is increasing in ϕ, or when −ϕa′′(ϕ)
a′(ϕ) < 1 as required by Assumption 2b. This establishes Proposition

2. Observe that in a consumption setting, the condition −ϕa′′(ϕ)
a′(ϕ) < 1 occurs with a constant relative risk

aversion utility function with weakly positive utility values, which mirrors our setting in which abatement
shares must also be weakly positive.
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B Data appendix

Record linkage procedure

To match plants over time between the U.S. Census Bureau and the pollution data, we use different com-
binations of non-unique identifiers, namely plant name, plant address, industry classifiers, zip code, and
FIPS county codes.

Specifically, we first clean plant name and plant address in both the external and the ASCM data by
performing a series of corrections and standardizations. For example, for plant names we remove a large
range of company suffixes such as CO and INC, and for addresses we remove common street identifiers. We
further drop and clean common expressions, special characters, and spelling errors from the plant names
and addresses. This step is crucial to increase the quality of plant names and address between the data.

In the second step, we iteratively block match our standardized data using different combinations of
non-unique identifiers. Specifically, for each plant in the external pollution data, we attempt to find them in
the ASMCM. By blocking, we reduce the number of potential comparisons made. For example, if we block
on FIPS code and 6-digit NAICS, then the names and addresses of a refineries in Santa Barbara County
in the CARB data are only matched to name and addresses of refineries in Santa Barbara County in the
ASMCM data. Importantly, we do not block on matches on years. This allows us to account for variation
in plant names, addresses, or other identifiers over time between plants. Changes in plant name could
reflect typographical error, but it could also reflect changes in ownership. Similarly, changes in industry
classifier could be a consequence of spurious industry switching in the data, or could be legitimate industry
switching documented as establishments respond to economic shocks (Chow et al., 2021).

After each matching iteration, we remove the uniquely match plants from each data before moving
on to the next matching iteration. In the first iteration, we use the most stringent matching statement by
matching exactly by name, address, within industry and geographic blocks. All uniquely matched pairs of
plant IDs between the two data are removed from the data. More than half of our matches come from this
most stringent matching argument. In the following iterations of matching, we block the data on different
combinations of industry identifiers and geographic identifiers, and then exact or fuzzy match on plant
name or plant address. We again keep the sets of matched unique plants identifiers. To further ensure the
quality of the matches, hours of clerical review by the researchers were conducted to review matches at all
steps of the record linkage algorithm.

Table B.1 and B.2 provide an highly stylized example of our matching procedure. Hypothetical data
1 and data 2 each have a unique plant with varying plant names and NAICS across three year. Such
missing or changing of plant identifiers is common in both our external pollution and ASMCM data. In
this hypothetical case, for any given year, exact matching on year, standardized name, and 3-digit NAICS
would not return any match. However, matching instead on the respective sets of names and NAICS for
both plants, the year 2002 combination for data 1 would exactly match to the year 2000 combination for
data 2. We use a similar approach of comparing the sets of non-unique identifiers for each unique plant
between the data for our formal match.
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Table B.1: Potential match candidate from hypothetical data 1

unique ID data 1 Year Plant name NAICS (3-digit)

plant 1 2000 GOLETA REFINERY 324
plant 1 2001 GOLETA REFINERY
plant 1 2002 COASTAL PETROLEUM 324

Table B.2: Potential match candidate from hypothetical data 2

unique ID data 2 Year Plant name NAICS (3-digit)

A001 2000 COASTAL PETROLEUM 324
A001 2001 GOLETA REFINERY 325
A001 2002 324
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C Figure appendix

Figure A1: NOx emissions, cap, and price trends in RECLAIM

Notes: NOx emissions are dashed, aggregate allocation of permits or the cap is solid, and the NOx permit price are dotted. Reproduced
from Fowlie, Holland and Mansur (2012). There is a typographic error in the original Fowlie, Holland and Mansur (2012) figure. It
should read ”in 2001”, and not ”in 2011”.

Figure A2: NBP NOx emissions and cap

Notes: Seasonal NBP NOx emission trends, and aggregate emission allowance budgets. The year 2003 cap is omitted from the graph
since not all states had joined the NBP yet (U.S. Environmental Protection Agency, 2009)
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Figure A3: Event-study model of the effect of NBP on NOx emissions on trimmed sample

Notes: Point estimates and 95% confidence intervals of the yearly effect of NBP on log NOx emissions relative to 2002, the year before
the NBP was introduced, using eq. (9). Standard errors are clustered at the county level.

Figure A4: Event-study model of the effect of NBP on NOx shadow price on trimmed sample

Notes: Point estimates and 95% confidence intervals of the yearly effect of NBP on log revenue per emissions relative to 2002, or α̂τ

using eq. (9). Standard errors are clustered at the county level
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Figure A5: Annual effects of NBP on allocative efficiency on trimmed sample

Notes: Top panel shows point estimates and 95% confidence intervals of the yearly effect of NBP on squared residuals relative to 2002,

or β̂τ using eq. (10). Bottom panel shows Ê[ϕm ]
τ

Ê[ϕb ]
τ = e

β̂τ

2 . Standard errors are clustered at the county code level.
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D Table appendix

Table A1: Trend-break model of RECLAIM

ln NOx emissions ln ARit ν̂2
it

(1) (2) (3)

RECLAIM X Post 0.022 −0.070 −0.168
(0.060) (0.074) (0.151)

RECLAIM X Trend 0.032∗∗ −0.034∗∗ 0.033∗

(0.014) (0.014) (0.017)

RECLAIM X Post X Trend −0.106∗∗∗ 0.133∗∗∗ −0.080∗

(0.026) (0.028) (0.044)

RECLAIM effect when t = 2005 −0.420∗∗∗ 0.522∗∗∗ −0.445∗∗∗

(0.110) (0.117) (0.136)

1 − Ê[ϕm ]

Ê[ϕb ]
0.199

[0.072, 0.31]

Observations 11,500 11,500 11,500

Notes: Estimates of differential pre-trend (RECLAIM X Trend), DiD effect (RECLAIM X Post), and differential post-trend break (RE-
CLAIM X Post X Trend) from eq. XYZ for log NOx , log average revenue per emissions, and predicted residuals from eq. 9 across

columns. Average effect for 2005 shown. The lower bound on allocative efficiency change for 2005 is 1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂
2 All models

include facility-specific and year-specific dummy variables. Standard errors clustered at the county-level in parentheses, and 95%
confidence interval in brackets.
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Table A2: Average treatment effect of RECLAIM on trimmed sample

ln NOx emissions ln ARit ν̂2
it

(1) (2) (3)

RECLAIM X Post −0.146∗∗ 0.166∗∗ −0.121∗

(0.059) (0.070) (0.066)

1 − Ê[ϕm ]

Ê[ϕb ]
0.059

[-0.004, 0.118]

Observations 11,500 11,500 11,500

Notes: Estimates of the average treatment effect of RECLAIM using a difference-in-difference model on the trimmed sample. Facilities
for which changes in emissions or revenue exceed 100 times the 99th percentile changes or less than 100 times smaller than the
1th percentile of changes are dropped. All models include year- and facility-level fixed effects. Columns (1) examines log NOx
emissions as outcome using eq. (9). Column (2) models log average revenue per emissions as outcome using eq. (9’). Column (3)
models the squared predicted residuals from eq. 9 as outcome using eq. (10). The lower bound on allocative efficiency change is

1 − Ê[ϕm ]

Ê[ϕb ]
= 1 − e

β̂
2 . Robust standard errors clustered at the zip code in parentheses, and 95% confidence interval in brackets.

Table A3: Average treatment effect of RECLAIM by type of firm

ν̂2
it ν̂2

it ν̂2
it

(1) (2) (3)

RECLAIM X Post −0.187∗∗ −0.181∗∗ −0.128
(0.087) (0.081) (0.080)

RECLAIM X Post X Multi-plant firm −0.044 −0.163
(0.080) (0.146)

Observations 11,500 9,500 9,500
Sample Matched Single region firms Single region firms

Notes: Estimates of the effect of RECLAIM on the dispersion of distortions. Column (1) further interacts the treatment variable with a
dummy equal to one if the firm is a multi plant firm. Column (2) drops multi-plant firms that operate plants both inside and outside
RECLAIM. Column (3) interacts the multi-plant dummy with the treatment variable for the sample that drops firm with plant inside
and outside RECLAIM. All models include plant and year fixed effects. Robust standard errors clustered at the zip code level in
parentheses.
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